VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Performance Analysis and Tank Test Validation of a Hybrid Wave-Current Energy Converter with a Single Power Takeoff

dc.contributor.authorJiang, Boxien
dc.contributor.committeechairParker, Robert G.en
dc.contributor.committeechairZuo, Leien
dc.contributor.committeememberChen, Bangfuhen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2020-07-02T08:01:45Zen
dc.date.available2020-07-02T08:01:45Zen
dc.date.issued2020-07-01en
dc.description.abstractMarine and hydrokinetic (MHK) energy, including ocean waves, tidal current, ocean current and river current, has been recognized as a promising power source due to its full-day availability and high energy potential. At this stage, ocean current energy, tidal energy and ocean wave energy are currently the most competitive sourves among all the categories of MHK. The state of art MHK energy harvesting technology mainly focus on harvesting either ocean wave energy or current energy, but not both. However, a significant amount of ocean waves and tidal/ ocean current coexist in many sites and traditional devices that harvest from a single form of MHK energy, cannot make full use of the coexisting ocean energy. Furthermore, MHK energy harvesting devices need to advance to be cost-effective and competitive with other energy sources. This is difficult to achieve. Ocean wave excitation is irregular, which means that ocean wave height and wave periods are unpredictable and excitation forces on energy harvesting devices can have large variance in amplitude and frequency. Such problems/ restrictions can be possibly addressed by the concept of a hybrid energy converter. In this sense, a hybrid wave-current ocean energy conveter (HWCEC) that simutaneously harvests energy from current and wave with one single power takeoff (PTO) is designed.The wave energy is extracted through relative heaving motion between a floating buoy and a submerged second body, while the current energy is extracted using a marine current turbine (MCT). Energy from both sources are integrated by a hybrid PTO whose concept is based on a mechanical motion rectifier (MMR). In this study, different working modes are investigated together with switching criteria.Simulations were conducted with hydrodynamic coefficients obtained from computational fluid dynamics analysis and boundary element method. Tank tests were conducted for a HWCEC under co-existing wave and current inputs. For comparison, separate baseline tests of a turbine and a two-body point absorber, each acting in isolation, are conducted. Experimental results validate the dynamic modeling and show that a HWCEC can increase the output power with a range between 29-87 percent over either current turbine and wave energy converter acting individually, and it can reduce by up to 70 percent the peak-to-average power ratio compared with the wave energy converter on the tested conditions.Such results demonstrate the potential of the HWCEC as an efficient and cost-effective design.en
dc.description.abstractgeneralOcean energy has been recognized as a promising power source due to its full-day availability and high energy potential. At this stage, ocean current energy, tidal energy and ocean wave energy are currently the most competitive sources among all the categories of ocean energy. The state of art ocean energy harvesting technology mainly focus on harvesting either ocean wave energy or current energy, but not both. However, a significant amount of ocean waves and tidal/ ocean current coexist in many sites and traditional devices that harvest from a single form of ocean energy, cannot make full use of the coexisting energy resource. Furthermore, MHK energy harvesting devices need to advance to be cost-effective and competitive with other energy sources. This is difficult to achieve. Ocean wave height and wave periods are unpredictable and excitation forces on energy harvesting devices can have large variance in amplitude and frequency. Such restrictions can be possibly addressed by the concept of a hybrid energy converter. In this sense, a hybrid wave-current ocean energy converter (HWCEC) that simultaneously harvests energy from current and wave with one single power takeoff (PTO), which consists of ball screw, gearbox, and generator, is designed.The wave energy is extracted through relative heaving motion between a floating buoy and a submerged second body, while the current energy is extracted using a marine current turbine (MCT). Energy from both sources are integrated by a hybrid PTO whose concept is based on a mechanical motion rectifier (MMR). In this study, different working modes are investigated together with switching criteria.Simulations were conducted with hydrodynamic coefficients obtained from computational fluid dynamics analysis and boundary element method. Tank tests were conducted for a HWCEC under co-existing wave and current inputs. For comparison, separate baseline tests of a turbine and a two-body, wave-energy-harvesting structure, each acting in isolation, are conducted. Experimental results validate the dynamic modeling and show that a HWCEC can increase the output power with a range between 29-87 percent over either current turbine and wave energy converter acting individually, and it can reduce by up to 70 percent the peak-to-average power ratio compared with the wave energy converter on the tested conditions.Such results demonstrate the potential of the HWCEC as an efficient and cost-effective design.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:24001en
dc.identifier.urihttp://hdl.handle.net/10919/99211en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectOcean energyen
dc.subjectHybrid energy converting systemen
dc.subjectPower takeoffen
dc.subjectWater tank testen
dc.titlePerformance Analysis and Tank Test Validation of a Hybrid Wave-Current Energy Converter with a Single Power Takeoffen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jiang_B_T_2020.pdf
Size:
17.89 MB
Format:
Adobe Portable Document Format

Collections