Strength and Performance of Steel Fiber Reinforced Concrete Post-Tensioned Flat Plates

dc.contributor.authorRosenthal, Joshua Thomasen
dc.contributor.committeechairRoberts-Wollmann, Carin L.en
dc.contributor.committeememberLeon, Roberto T.en
dc.contributor.committeememberKoutromanos, Ioannisen
dc.contributor.departmentCivil and Environmental Engineeringen
dc.date.accessioned2019-08-07T08:00:21Zen
dc.date.available2019-08-07T08:00:21Zen
dc.date.issued2019-08-06en
dc.description.abstractLoad testing was performed on a one-third scale model steel fiber reinforced concrete post-tensioned flat plate. The specimen had nine 10ft x 10ft x 3in. bays along with a 2ft-6in. overhang. Distributed loading was applied with a whiffle tree loading system at each bay and overhang section. Throughout the test, crack widths, crack locations, deflections, concrete strains, and reinforcing bar strains were monitored. The post-tensioned flat plate was designed to just meet the maximum allowable stress requirements of ACI 318. Minimal quantities of hairline cracks were observed after stressing the slab, and up through service-level loads, the cracks grew slightly in length and width. The slab behaved elastically through service-level loading. As factored-level loading was approached, the slab began to behave inelastically as indicated by both the load-deflection plots and the load-strain plots. A total ultimate load of 282psf (174psf of applied load) was reached when concrete crushing occurred. A 0.20in. wide full-length crack was observed running on the bottom surface of the slab between column lines 1 and 2, and a full-length crack was observed at column line 2 on the top surface of the slab. These two cracks were the leading contributors to the slab's failure. The performance of the SFRC post-tensioned flat plate indicated that considerations should be made to remove requirements for negative moment reinforcement in post-tensioned flat plates when SFRC is used. Also, the requirements for positive moment reinforcement should be modified. Additionally, the SFRC post-tensioned flat plate exhibited excellent levels of ductility. More experimentation should be conducted to determine if the maximum tensile stress in ACI 318 can be increased for post-tensioned flat plates with SFRC.en
dc.description.abstractgeneralLoad testing was performed on a one-third scale model steel fiber reinforced concrete (SFRC) post-tensioned flat plate. Post-tensioned flat plates are a type of concrete structural system typically used as flooring. This system typically employs high-strength steel strands, which are stretched to introduce compression into the concrete, which helps prevent the onset of cracking. The specimen had nine 10ft x 10ft x 3in. bays along with a 2ft-6in. overhang. Distributed loading was applied with a whiffle tree loading system at each bay and overhang section. The whiffle tree loading system was used to allow actuators to spread out the vertical loading on the slab. During the test, crack widths, crack locations, deflections, concrete strains, and reinforcing bar strains were monitored. The post-tensioned flat plate was designed to just meet the maximum allowable stress requirements of the governing standard, ACI 318. Minimal quantities of hairline cracks were observed after stressing the slab, and up through service-level loads, the cracks grew slightly in length and width. As larger loads were applied, the cracks grew and the effects of these cracks on the slab were evidenced in the deflection and strain measurements. A total ultimate load of 282psf (174psf of applied load) was reached when concrete crushing occurred. A 0.20in. wide full-length crack was observed running on the bottom surface of the slab between column lines 1 and 2, and a full-length crack was observed at column line 2 on the top surface of the slab. These two cracks were a driving force in the slab’s failure. The performance of the SFRC post-tensioned flat plate indicated that considerations should be made to change the requirements for negative and positive moment reinforcement in post-tensioned flat plates when SFRC is used. Additionally, the SFRC post-tensioned flat plate exhibited great performance after significant cracking was present. More experimentation should be conducted to determine if the maximum allowable tensile stress in ACI 318 can be increased for post-tensioned flat plates with SFRC.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:21843en
dc.identifier.urihttp://hdl.handle.net/10919/92871en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectpost-tensioneden
dc.subjectflat platesen
dc.subjectsteel fibersen
dc.subjectSFRCen
dc.titleStrength and Performance of Steel Fiber Reinforced Concrete Post-Tensioned Flat Platesen
dc.typeThesisen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rosenthal_JT_T_2019.pdf
Size:
12.07 MB
Format:
Adobe Portable Document Format

Collections