VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

The Influence of Switchgrass Establishment on Soil Organic Matter Pools in an Agricultural Landscape

dc.contributor.authorPryatel, Margaret Janeen
dc.contributor.committeechairBarrett, John E.en
dc.contributor.committeememberStrahm, Brian D.en
dc.contributor.committeememberStrickland, Michaelen
dc.contributor.committeememberEmrick, Verl IIIen
dc.contributor.departmentBiological Sciencesen
dc.date.accessioned2017-02-18T07:00:13Zen
dc.date.available2017-02-18T07:00:13Zen
dc.date.issued2015-08-27en
dc.description.abstractAgricultural activities have significant impacts on global biogeochemical cycles, particularly carbon and nitrogen. Conventional row-crop agriculture accelerates the decomposition of soil organic matter, contributing to atmospheric carbon and declining soil fertility. Planting perennial warm season grasses is a useful management alternative to row crop agriculture because these species have been shown to be effective at increasing soil carbon storage and retaining nitrogen. The objectives of this research were to examine how converting row crops to a native perennial warm season grass (Panicum virgatum L., common name switchgrass) influences the recovery of soil organic matter fractions and nitrogen retention within an agricultural watershed in the Shenandoah Valley of Virginia. Soil samples were analyzed for total carbon and nitrogen, three particulate organic matter fractions, root biomass, mineralizable carbon and nitrogen pools, and microbial biomass. Surprisingly, I observed significant declines in bulk soil organic matter and surface particulate organic matter pools following switchgrass establishment. There were no differences in mineralizable carbon and microbial biomass pools between row crop and switchgrass soils, but labile carbon pools and nitrogen immobilization increased as switchgrass stands matured. These results are potentially due to switchgrass litter inputs stimulating microbial communities and accelerating the decomposition of recalcitrant soil organic matter, leading to declines in soil organic carbon stocks. The results from this study will be used to understand the environmental and economic benefits of implementing switchgrass plantings in agricultural watershed as a means to mitigate agriculturally-induced effects on carbon storage and nitrogen retention in soils.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:6110en
dc.identifier.urihttp://hdl.handle.net/10919/75060en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectswitchgrassen
dc.subjectsoil organic matteren
dc.subjectpriming effectsen
dc.subjectShenandoah Valleyen
dc.titleThe Influence of Switchgrass Establishment on Soil Organic Matter Pools in an Agricultural Landscapeen
dc.typeThesisen
thesis.degree.disciplineBiological Sciencesen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Pryatel_MJ_T_2015.pdf
Size:
595.35 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Pryatel_MJ_T_2015_support_1.pdf
Size:
94.34 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents

Collections