Ice Nucleation Activity of Alpine Bioaerosol Emitted in Vicinity of a Birch Forest

dc.contributor.authorSeifried, Teresa M.en
dc.contributor.authorBieber, Paulen
dc.contributor.authorKunert, Anna T.en
dc.contributor.authorSchmale, David G. IIIen
dc.contributor.authorWhitmore, Karinen
dc.contributor.authorFröhlich-Nowoisky, Janineen
dc.contributor.authorGrothe, Hinrichen
dc.contributor.departmentSchool of Plant and Environmental Sciencesen
dc.date.accessioned2021-06-24T14:55:08Zen
dc.date.available2021-06-24T14:55:08Zen
dc.date.issued2021-06-17en
dc.date.updated2021-06-24T14:11:52Zen
dc.description.abstractIn alpine environments, many plants, bacteria, and fungi contain ice nuclei (IN) that control freezing events, providing survival benefits. Once airborne, IN could trigger ice nucleation in cloud droplets, influencing the radiation budget and the hydrological cycle. To estimate the atmospheric relevance of alpine IN, investigations near emission sources are inevitable. In this study, we collected 14 aerosol samples over three days in August 2019 at a single site in the Austrian Alps, close to a forest of silver birches, which are known to release IN from their surface. Samples were taken during and after rainfall, as possible trigger of aerosol emission by an impactor and impinger at the ground level. In addition, we collected aerosol samples above the canopy using a rotary wing drone. Samples were analyzed for ice nucleation activity, and bioaerosols were characterized based on morphology and auto-fluorescence using microscopic techniques. We found high concentrations of IN below the canopy, with a freezing behavior similar to birch extracts. Sampled particles showed auto-fluorescent characteristics and the morphology strongly suggested the presence of cellular material. Moreover, some particles appeared to be coated with an organic film. To our knowledge, this is the first investigation of aerosol emission sources in alpine vegetation with a focus on birches.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSeifried, T.M.; Bieber, P.; Kunert, A.T.; Schmale, D.G., III; Whitmore, K.; Fröhlich-Nowoisky, J.; Grothe, H. Ice Nucleation Activity of Alpine Bioaerosol Emitted in Vicinity of a Birch Forest. Atmosphere 2021, 12, 779.en
dc.identifier.doihttps://doi.org/10.3390/atmos12060779en
dc.identifier.urihttp://hdl.handle.net/10919/103988en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectbioaerosolen
dc.subjectice nucleationen
dc.subjectalpine vegetationen
dc.subjectbirchen
dc.subjectfluorescence microscopyen
dc.subjectscanning electron microscopyen
dc.titleIce Nucleation Activity of Alpine Bioaerosol Emitted in Vicinity of a Birch Foresten
dc.title.serialAtmosphereen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
atmosphere-12-00779.pdf
Size:
12.99 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: