Innovative Platform Design for In Vitro Primary Blast Injury Research
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
One of the principal challenges of primary blast injury research is imitation of shock waves accurately and consistently in a safe and tunable platform. Existing simulators have been effective in these goals but have not been conducive for in vitro models due to their large size and air-mediated wave propagation. In this thesis, a redesigned benchtop shock wave generator (SWG) has provided a platform for in vitro models. A pulsed power generator charges a capacitor and discharges the capacitor through a bridge wire. The discharge causes the bridge wire to experience phase changes, momentarily becoming a gas or plasma. In this moment, the bridge wire expands radially and creates a pressure wave in the surrounding water. As the wave propagates, it forms a shock wave and strikes the cell platform at the far end of the conical tank. Current design efforts are focused on the tunability of the SWG, by varying the bridge wire material and diameter. Five materials at three bridge wire diameters have been tested. Each bridge wire was inserted into the SWG via a pinching mechanism. Either side of the pinching mechanism was connected to either terminal of the capacitor. When the pulsed power generator was cycled, the bridge wire was vaporized and generated a shock wave. A piezoelectric sensor near the wide end of the tank recorded the passing of the shock wave, which was used to derive various pressure metrics that correlate to injury. The sample size for each combination of diameter and material was five, with a grand total of seventy-five samples run. Two-way ANOVAs measuring the impacts of bridge wire material and diameter on a variety of shock wave metrics found that the diameter played a significant role in determining the peak overpressure and positive impulse generated while the main effect of material played a much smaller role. The interaction between material and diameter was also found to be significant. The tunable benchtop SWG provides a platform for exploration of primary blast injury using in vitro models. By adjusting the bridge wire diameter, the SWG can generate waves with a variety of shock wave metrics, providing an opportunity for researchers to address various degrees of injury. With the addition of this technology to the efforts to understand primary blast injury, development of treatments and protective equipment can be expedited.