VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Efficient Resource Development in Electric Utilities Planning Under Uncertainty

TR Number

Date

2004-09-07

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The thesis aims to introduce an efficient resource development strategy in electric utility long term planning under uncertainty considerations. In recent years, electric utilities have recognized the concepts of robustness, flexibility, and risk exposure, to be considered in their resource development strategy. The concept of robustness means to develop resource plans that can perform well for most, if not all futures, while flexibility is to allow inexpensive changes to be made if the future conditions deviate from the base assumptions. A risk exposure concept is used to quantify the risk hazards in planning alternatives for different kinds of future conditions.

This study focuses on two technical issues identified to be important to the process of efficient resource development: decision-making analysis considering robustness and flexibility, and decision-making analysis considering risk exposure. The technique combines probabilistic methods and tradeoff analysis, thereby producing a decision set analysis concept to determine robustness that includes flexibility measures. In addition, risk impact analysis is incorporated to identify the risk exposure in planning alternatives. Contributions of the work are summarized as follows. First, an efficient resource development framework for planning under uncertainty is developed that combines features of utility function, tradeoff analysis, and the analytical hierarchy process, incorporating a performance evaluation approach. Second, the multi-attribute risk-impact analysis method is investigated to handle the risk hazards exposed in power system resource planning. Third, the penetration levels of wind and photovoltaic generation technologies into the total generation system mix, with their constraints, are determined using the decision-making model. The results from two case studies show the benefits of the proposed framework by offering the decision makers various options for lower cost, lower emission, better reliability, and higher efficiency plans.

Description

Keywords

Decision Making, Flexibility, Decision Support System, Electric Utilities Power Generation, Power System Planning, Strategic Planning, Risk Exposure, Robustness

Citation