VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Takeover Required!  Augmented Reality Head-Up Displays' Ability to Increase Driver Situation Awareness During Takeover Scenarios in  Driving Automation Systems

TR Number

Date

2023-07-27

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The number of automated features in surface vehicles are increasing as new vehicles are released each year. Some of these features allow drivers to temporarily take their attention off-road and en-gage in other tasks. However, there are times when it is important for drivers to immediately take control of the vehicle, if required. To safely take control, drivers must understand what is required of them and have situation awareness (SA) to understand important changes or factors within the environment around them. We can present drivers with needed takeover information using a head-up display (HUD), keeping the driver's eyes on the road. However, drivers operating conditionally automated vehicles on various roadways, such as highways and urban arterial roads, require differ-ent information to be conveyed to them as they drive due to inherent differences in roadway and obstacle features within the driving scene, such as the addition of vulnerable road users on urban arterial roads. This work aimed to (1) investigate impacts of novel HUDs on driver situation awareness during takeover on a highway, (2) identify system design criteria to fulfill driver's needs during takeover on an urban arterial road, and, (3) examine the effects of HUDs on driver situation awareness during takeover on an urban arterial road. We investigated these goals by collecting em-pirical data for takeover performance metrics, self-reported situation awareness, participant prefer-ences, and expert's opinions. From our studies we conclude that HUDs can increase aspects of takeover performance on high-ways, with participants demonstrating lower response times and higher time to collision metrics. We did not find significant impacts of HUDs on driver situation awareness on highways. Results from our semistructed interviews indicated that experts felt systems should communicate the need for driver attention to relevant information, communicate obstacle information, and provide information using a variety of driver senses. HUDs can also increase driver situation awareness during takeover on an urban arterial road and support improved takeover performance. This work allowed us to identify potential use cases and design criteria for new designs of novel HUDs to deliver important information during takeover.

Description

Keywords

Driving Automation Systems, Takeover, Head-Up Display, Situation Awareness

Citation