Multiplexed Electrospray Emitters for Highly Conductive and Corrosive Fluids

dc.contributor.authorLi, Liuruien
dc.contributor.committeechairDeng, Weiweien
dc.contributor.committeememberLiu, Yangen
dc.contributor.committeememberCheng, Jiangtaoen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2017-06-15T08:00:16Zen
dc.date.available2017-06-15T08:00:16Zen
dc.date.issued2017-06-14en
dc.description.abstractThis thesis reports the design, fabrication, and operation of silicone based multiplexed electrospray (MES) emitters. After reviewing the feasibility of utilizing electrospray as a scalable thin film deposition technique as well as the advantages and limitations of prior MES emitters, we present a design rationale for MES suitable for highly conductive and corrosive fluids. Then we customized a 1064nm fiber laser micromachining system to precisely and rapidly machine silicone sheet and silicon wafers. Laser energy and path are judicially chosen to create clean and round micro posts that form the external structure of the nozzles. For MES with low flow rate per nozzle, it is of vital importance to evenly distribute the liquid into each nozzle on the entire MES array by controlling the pressure drop inside each fluid flow channel. To this end, we modeled the dimension of microfluidic channels that introduce flow impedance overwhelming surface tension at the nozzle tip. We presented laser microfabrication techniques for fabricating two typical types of microfluidic channels: the through-hole array on conductive silicone sheets and the in-plane microfluidic channel on silicon wafers. Next, we developed a convenient assemble process for the integration of three layers (distributor layer, extractor layer, and collector layer) of the MES emitter. The uniformity of the flow rate among nozzles on MES emitters was investigated by observing the overall spray profiles and measuring the diameter of each jet. The results suggest that the silicone-based MES emitters are feasible for spraying highly conductive and corrosive liquids. The MES emitter developed in this thesis may become a promising tool in the scalable manufacturing of thin film perovskite solar cells.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:11576en
dc.identifier.urihttp://hdl.handle.net/10919/78199en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectmultiplexed-electrospray-emitteren
dc.titleMultiplexed Electrospray Emitters for Highly Conductive and Corrosive Fluidsen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Li_L_T_2017.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format

Collections