Dynamics of Hubbard-band quasiparticles in disordered optical lattices

dc.contributor.authorScarola, Vito W.en
dc.contributor.authorDe Marco, B.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2017-01-29T19:39:04Zen
dc.date.available2017-01-29T19:39:04Zen
dc.date.issued2015-11-30en
dc.description.abstractQuantum degenerate gases trapped in optical lattices are ideal testbeds for fundamental physics because these systems are tunable, well characterized, and isolated from the environment. Controlled disorder can be introduced to explore suppression of quantum diffusion in the absence of conventional dephasing mechanisms such as phonons, which are unavoidable in experiments on electronic solids. Recent experiments use transport of degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015)) to probe a particularly extreme regime of strong interaction in what can be modeled as an Anderson-Hubbard model. These experiments find evidence for an intriguing insulating phase where quantum diffusion is completely suppressed by strong disorder. Quantitative interpretation of these experiments remains an open problem that requires inclusion of non-zero entropy, strong interaction, and trapping. We argue that the suppression of transport can be thought of as localization of Hubbard-band quasiparticles. We construct a theory of transport of Hubbard-band quasiparticles tailored to trapped optical lattice experiments. We compare the theory directly with center-ofmass transport experiments of Kondov et al. with no fitting parameters. The close agreement between theory and experiments shows that the suppression of transport is only partly due to finite entropy effects. We argue that the complete suppression of transport is consistent with Anderson localization of Hubbard-band quasiparticles. The combination of our theoretical framework and optical lattice experiments offers an important platform for studying localization in isolated many-body quantum systems.en
dc.description.versionPublished versionen
dc.format.extent14 pagesen
dc.identifier.doihttps://doi.org/10.1103/PhysRevA.92.053628en
dc.identifier.issn2469-9926en
dc.identifier.issue5en
dc.identifier.urihttp://hdl.handle.net/10919/74449en
dc.identifier.volume92en
dc.languageEnglishen
dc.publisherAmerican Physical Societyen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000365771500013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectOpticsen
dc.subjectPhysics, Atomic, Molecular & Chemicalen
dc.subjectPhysicsen
dc.subjectMETAL-INSULATOR-TRANSITIONen
dc.subjectMANY-BODY LOCALIZATIONen
dc.subjectULTRACOLD ATOMSen
dc.subjectANDERSON LOCALIZATIONen
dc.subjectINTERACTING FERMIONSen
dc.subjectMOTT INSULATORen
dc.subjectMODELen
dc.subjectSYSTEMSen
dc.subjectPHASEen
dc.subjectTHERMALIZATIONen
dc.titleDynamics of Hubbard-band quasiparticles in disordered optical latticesen
dc.title.serialPhysical Review Aen
dc.typeArticle - Refereeden
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1503.07195v1.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:
Draft Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: