Transforming Free-Form Sentences into Sequence of Unambiguous Sentences with Large Language Model
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In the realm of natural language programming, translating free-form sentences in natural language into a functional, machine-executable program remains difficult due to the following 4 challenges. First, the inherent ambiguity of natural languages. Second, the high-level verbose nature in user descriptions. Third, the complexity in the sentences and Fourth, the invalid or semantically unclear sentences. Our first solution is a Large Language Model (LLM) based Artificial Intelligence driven assistant to process free-form sentences and decompose them into sequences of simplified, unambiguous sentences that abide by a set of rules, thereby stripping away the complexities embedded within the original sentences. These resulting sentences are then used to generate the code. We applied the proposed approach to a set of free-form sentences written by middle-school students for describing the logic behind video games. More than 60% of the free-form sentences containing these problems were sufficiently converted to sequences of simple unambiguous object-oriented sentences by our approach. Next, the thesis also presents "IntentGuide," a neuro-symbolic integration framework to enhance the clarity and executability of human intentions expressed in freeform sentences. IntentGuide effectively integrates the rule-based error detection capabilities of symbolic AI with the powerful adaptive learning abilities of Large Language Model to convert ambiguous or complex sentences into clear, machine-understandable instructions. The empirical evaluation of IntentGuide performed on natural language sentences written by middle school students for designing video games, reveals a significant improvement in error correction and code generation abilities compared to previous approach, attaining an accuracy rate of 90%.