Real-Time Detection of GPS Spoofing Attack with Hankel Matrix and Unwrapped Phase Angle Data

dc.contributor.authorKhan, Imtiajen
dc.contributor.committeechairCenteno, Virgilioen
dc.contributor.committeememberLiu, Chen-Chingen
dc.contributor.committeememberKekatos, Vassilisen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2022-01-07T14:54:48Zen
dc.date.available2022-01-07T14:54:48Zen
dc.date.issued2021-11en
dc.description.abstractCyber-attack on synchrophasor data has become a widely explored area. However, GPS-spoofing and FDIA attacks require different responsive actions. State-estimation based attack detection method works similar way for both types of attacks. It implies that using state-estimation based detection alone doesn’t give the control center enough information about the attack type. This scenario is specifically more critical for those attack detection methods which consider GPS-spoofing attack as another FDIA with falsified phase angle data. Since identifying correct attack type is paramount, we have attempted to develop an algorithm to distinguish these two attacks. Previous researchers exploited low-rank approximation of Hankel Matrix to differentiate between FDIA and physical events. We have demonstrated that, together with angle unwrapping algorithm, low-rank approximation of Hankel Matrix can help us separating GPS-spoofing attack with FDIA. The proposed method is verified with simulation result. It has been demonstrated that the GSA with 3 second time-shift creates a low-rank approximation error 700% higher than that of normal condition, whereas FDIA doesn’t produce any significant change in low-rank approximation error from that of normal condition. Finally, we have proposed a real-time method for successful identification of event, FDIA and GSA.en
dc.description.abstractgeneralCyber-attack on synchrophasor data has become a widely explored area. However, GPS-spoofing and FDIA attacks require different responsive actions. State-estimation based attack detection method works similar way for both types of attacks. It implies that using state-estimation based detection alone doesn’t give the control center enough information about the attack type. This scenario is specifically more critical for those attack detection methods which consider GPS-spoofing attack as another FDIA with falsified phase angle data. Since identifying correct attack type is paramount, we have attempted to develop an algorithm to distinguish these two attacks. Previous researchers exploited low-rank approximation of Hankel Matrix to differentiate between FDIA and physical events. We have demonstrated that, together with angle unwrapping algorithm, low-rank approximation of Hankel Matrix can help us separating GPS-spoofing attack with FDIA. The simulation result verifies the next chapter discusses our proposed algorithm on GPS-spoofing attack detection and its ability to distinguish this type of attack from conventional FDIA. The proposed method is verified with simulation result. It has been demonstrated that the GSA with 3 second time-shift creates a low-rank approximation error 700% higher than that of normal condition, whereas FDIA doesn’t produce any significant change in low-rank approximation error from that of normal condition. Finally, we have proposed a real-time method for successful identification of event, FDIA and GSA.en
dc.description.degreeM.S.en
dc.format.mediumETDen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/107448en
dc.language.isoenen
dc.publisherVirginia Techen
dc.rightsCreative Commons Attribution-ShareAlike 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/en
dc.subjectFDIAen
dc.subjectGPS-spoofingen
dc.subjectPMUen
dc.subjectUnwrappeden
dc.subjectHankel matrixen
dc.titleReal-Time Detection of GPS Spoofing Attack with Hankel Matrix and Unwrapped Phase Angle Dataen
dc.typeThesisen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameM.S.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khan_I_M_2021.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections