Domain Adaptation with a Classifier Trained by Robust Pseudo-Labels
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
With the rapid growth of computing power, approaches based on deep learning algorithms have achieved remarkable results in solving computer vision classification problems. These performance improvements are achieved by assuming the source and target data are collected from the same probability distribution. However, this assumption is usually too strict to be satisfied in many real-world applications, such as big data analysis, natural language processing, and computer vision classification problems. Because of distribution discrepancies between these domains, directly training the model on the source domain cannot be expected to generate satisfactory results on the target domain. Therefore, the problem of minimizing these data distribution discrepancies is the main challenge with which modern machine learning is now faced. To address this problem, domain adaptation (DA) aims to identify domain-invariant features between two different but related domains. This thesis proposes a state-of-the-art DA approach that overcomes the limitations of traditional DA methods. To capture fine-grained information for each category, I deploy centroid-to-centroid alignment to perform domain adaptation. An Exponential Moving Average strategy (EMA) is used to ensure we can form robust source and target centroids. A Gaussian-uniform mixture model is trained using an Expectation-Maximization (EM) algorithm to infer the robustness of the target pseudo-labels. With the help of target pseudo-labels, I propose two novel types of classifiers: (1) a target-oriented classifier (TO); and (2) a centroid-oriented classifier (CO). Extensive experiments show that these two classifiers exhibit superior performance on a variety of DA benchmarks when compared to standard baseline methods.