Adaptive Predictor-Based Output Feedback Control of Unknown Multi-Input Multi-Output Systems: Theory and Application to Biomedical Inspired Problems

dc.contributor.authorNguyen, Chuong Hoangen
dc.contributor.committeechairLeonessa, Alexanderen
dc.contributor.committeememberWicks, Alfred L.en
dc.contributor.committeememberSouthward, Steve C.en
dc.contributor.committeememberKurdila, Andrew J.en
dc.contributor.committeememberAbaid, Nicoleen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2016-06-04T08:00:48Zen
dc.date.available2016-06-04T08:00:48Zen
dc.date.issued2016-06-03en
dc.description.abstractFunctional Electrical Stimulation (FES) is a technique that applies electrical currents to nervous tissue in order to actively induce muscle contraction. Recent research has shown that FES provides a promising treatment to restore functional tasks due to paralysis caused by spinal cord injury, head injury, and stroke, to mention a few. Therefore, the overarching goal of this research work is to develop FES controllers to enable patients with movement-disorder to control their limbs in a desired manner and, in particular, to aid Parkinson's patients to suppress hand tremor. In our effort to develop strategies for muscle stimulation control, we first implement a model-based control technique assuming that all the states are measurable. The Hill-type muscle model coupled with a simplified 2DoF model of the arm is used to study the performance of our proposed adaptive sliding mode controller for simulation purpose. However, in the more practical situations, human limb dynamics are extremely complicate and it is inadequate to use model based controllers, especially considering there are still technical limitations that allow in vivo measurements of muscle activity. To tackle these challenges, we have developed output feedback adaptive control approaches for a class of unknown multi-input multi-output systems. Such control strategies are first developed for linear systems, and then extended to the nonlinear case. The proposed controllers, supported by experimental results, require minimum knowledge of the system dynamics and avoid many restrictive assumptions typically found in the literature. Therefore, we expect that the results introduced in this dissertation can provide a solution for a wide class of nonlinear uncertain systems, with focus on practical issues such as partial state measurement and the presence of mismatched uncertainties.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:7829en
dc.identifier.urihttp://hdl.handle.net/10919/71312en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectUnknown system dynamicsen
dc.subjectnon-model based controlen
dc.subjectmodel predictoren
dc.subjectnonlinear MIMO systemsen
dc.subjectoutput feedback controlen
dc.subjectadaptive control.en
dc.titleAdaptive Predictor-Based Output Feedback Control of Unknown Multi-Input Multi-Output Systems: Theory and Application to Biomedical Inspired Problemsen
dc.typeDissertationen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
Nguyen_C_D_2016.pdf
Size:
10.24 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Nguyen_C_D_2016_support_4.pdf
Size:
147.81 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents
Loading...
Thumbnail Image
Name:
Nguyen_C_D_2016_support_5.pdf
Size:
210.05 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents
Loading...
Thumbnail Image
Name:
Nguyen_C_D_2016_support_3.pdf
Size:
148.65 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents
Loading...
Thumbnail Image
Name:
Nguyen_C_D_2016_support_6.pdf
Size:
149.27 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents