Perturbative field-theoretical analysis of three-species cyclic predator-prey models
dc.contributor.author | Yao, Louie Hong | en |
dc.contributor.author | Swailem, Mohamed | en |
dc.contributor.author | Dobramysl, Ulrich | en |
dc.contributor.author | Tauber, Uwe C. | en |
dc.date.accessioned | 2023-06-21T15:12:48Z | en |
dc.date.available | 2023-06-21T15:12:48Z | en |
dc.date.issued | 2023-06 | en |
dc.description.abstract | We apply a perturbative Doi-Peliti field-theoretical analysis to the stochastic spatially extended symmetric Rock-paper-Scissors (RPS) and May-Leonard (ML) models, in which three species compete cyclically. Compared to the two-species Lotka-Volterra predator-prey (LV) model, according to numerical simulations, these cyclical models appear to be less affected by intrinsic stochastic fluctuations. Indeed, we demonstrate that the qualitative features of the ML model are insensitive to intrinsic reaction noise. In contrast, and although not yet observed in numerical simulations, we find that the RPS model acquires significant fluctuation-induced renormalizations in the perturbative regime, similar to the LV model. We also study the formation of spatio-temporal structures in the framework of stability analysis and provide a clearcut explanation for the absence of spatial patterns in the RPS system, whereas the spontaneous emergence of spatio-temporal structures features prominently in the LV and the ML models. | en |
dc.description.notes | The authors gratefully acknowledge inspiring discussions with Erwin Frey, Nigel Goldenfeld, Qian He, Mauro Mobilia, Michel Pleimling, Alastair Rucklidge, and Royce K P Zia. This research was partially supported by the U.S National Science Foundation, Division of Mathematical Sciences under Award No. NSF DMS-2128587. | en |
dc.description.sponsorship | U.S National Science Foundation, Division of Mathematical Sciences [NSF DMS-2128587] | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1088/1751-8121/acd0e4 | en |
dc.identifier.eissn | 1751-8121 | en |
dc.identifier.issn | 1751-8113 | en |
dc.identifier.issue | 22 | en |
dc.identifier.other | 225001 | en |
dc.identifier.uri | http://hdl.handle.net/10919/115471 | en |
dc.identifier.volume | 56 | en |
dc.language.iso | en | en |
dc.publisher | IOP Publishing | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | predator-prey model | en |
dc.subject | cyclic competition | en |
dc.subject | field-theoretical analysis | en |
dc.subject | pattern formation | en |
dc.subject | fluctuation-induced behavior | en |
dc.title | Perturbative field-theoretical analysis of three-species cyclic predator-prey models | en |
dc.title.serial | Journal of Physics A-Mathematical and Theoretical | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Yao_2023_J._Phys._A _Math._Theor._56_225001.pdf
- Size:
- 8.35 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version