Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

dc.contributor.authorWang, Delien
dc.contributor.authorLiu, Sufenen
dc.contributor.authorWang, Jieen
dc.contributor.authorLin, Ruoqianen
dc.contributor.authorKawasaki, Masahiroen
dc.contributor.authorRus, Ericen
dc.contributor.authorSilberstein, Katherine E.en
dc.contributor.authorLowe, Michael A.en
dc.contributor.authorLin, Fengen
dc.contributor.authorNordlund, Dennisen
dc.contributor.authorLiu, Hongfangen
dc.contributor.authorMuller, David A.en
dc.contributor.authorXin, Huolin L.en
dc.contributor.authorAbrun, Hector D.en
dc.contributor.departmentChemistryen
dc.date.accessioned2016-09-24T01:31:42Zen
dc.date.available2016-09-24T01:31:42Zen
dc.date.issued2016-06-01en
dc.description.abstractReplacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.en
dc.description.versionPublished versionen
dc.format.extent? - ? (9) page(s)en
dc.identifier.doihttps://doi.org/10.1038/ncomms11941en
dc.identifier.issn2041-1723en
dc.identifier.urihttp://hdl.handle.net/10919/73034en
dc.identifier.volume7en
dc.languageEnglishen
dc.publisherNature Publishing Groupen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000379084500001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectcore-shell nanoparticlesen
dc.subjectelectronic behavioren
dc.subjectcharge redistributionen
dc.subjectfacile synthesisen
dc.subjectfuel-cellsen
dc.subjectcu alloysen
dc.subjectpden
dc.subjectauen
dc.subjectmonolayeren
dc.subjectcatalystsen
dc.titleSpontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reactionen
dc.title.serialNature Communicationsen
dc.typeArticle - Refereeden
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Chemistryen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description:
Publisher's Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: