Browsing by Author "Allen, Irving Coy"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
- Battling Bacteria: Characterizing the NOD-Like Receptor (NLR) Immune Response to Brucella abortus and Borrelia burgdorferi in Host-pathogen InteractionsTupik, Juselyn D. (Virginia Tech, 2024-08-19)The innate immune system is integral for defense against infectious diseases. Characterized by Pattern Recognition Receptors (PRRs), which sense conserved molecular motifs known as Pathogen-Associated Molecular Patterns (PAMPs), the innate immune system sets a system of checks and balances to regulate inflammation in host defense. In this dissertation, we focus on one class of PRRs known as the NOD-like Receptors (NLRs) in response to bacterial diseases. This class consists of pro-inflammatory receptors that form a multi-protein complex termed the inflammasome, as well as regulatory NLRs that modulate inflammation. Here, we investigated the roles of inflammasomes and negative regulatory NLRX1 in response to bacterial diseases. First, we studied brucellosis, a zoonotic, chronic disease often transmitted in unpasteurized dairy products from livestock. Using murine models and bone marrow-derived macrophages (BMDMs) challenged with Brucella abortus, we found that canonical inflammasomes in murine models were protective against brucellosis through the initiation of inflammatory cell death called pyroptosis. In contrast, the inhibition of inflammation by NLRX1 adversely led to increased pathology in the spleen and liver in infected murine models. Despite these contrasting results, Brucella genomic DNA was an effective PAMP for NLR recognition. These results suggest the importance of DNA recognition by NLRs during brucellosis. Second, we investigated NLRX1 regulation of Borrelia burgdorferi in Lyme arthritis using murine models. Characterized by persistent inflammation of the joints, Lyme arthritis is an enigmatic and difficult inflammatory condition to resolve. We found that NLRX1 was protective against arthritis. By characterizing changes in gene and protein expression of infected ankle joints, in addition to in vitro studies in BMDMs and fibroblasts, we found that NLRX1 enhances cell migration and regulates cell metabolism. Our results suggest that NLRX1 may metabolically shift macrophages toward a more favorable wound-healing environment for arthritis resolution. Ultimately, this work emphasizes the importance of balance in NLR signaling, which occurs within NLRs and from crosstalk with other inflammatory pathways. Further, NLR signaling is highly multifaceted and context-specific for the cell type and bacterial disease, showcasing the complexity of host-pathogen interactions when battling bacteria.
- Characterization of pro- and anti-inflammatory immune responses in SARS-CoV-2 infectionIvester, Hannah Marie (Virginia Tech, 2024-05-14)Viral infection stimulates the immune response to produce many cytokines and chemokines, the proteins imperative to fight a brewing infection. This response begins through recognition of pathogen-associated molecular patterns (PAMPs) from the virus, or from other signatures characteristic of tissue damage, damage-associated molecular patterns (DAMPs), by pattern recognition receptors (PRRs) that in turn stimulate pro-inflammatory signaling cascades. The results of these signaling pathways include the release of cytokines and chemokines that work to further upregulate immune responses and attract immune cells to the site of infection, respectively. In the case of SARS-CoV-2 infection, these responses can become problematic if they go unmitigated or unresolved, resulting in the severe COVID-19 manifestation of the 'cytokine storm,' or multisystem inflammatory syndrome in children (MIS-C). One classically increased protein in cytokine storm of COVID-19 patients is C-X-C motif chemokine 10 (CXCL10), which has been explored as a prognostic marker as it is shown to be predictive of disease outcome in hospitalized patients. To prevent severe outcomes like cytokine storm, a delicate balance must be struck, to ensure that this inflammation does not result in high levels of diffuse tissue damage. To achieve this, anti-inflammatory pathways exist within the immune system and help dampen the signals being induced. One such unique anti-inflammatory protein is a pattern recognition receptor known as NLRX1 (Nucleotide binding oligomerization domain, leucine rich repeat containing X1), that can interact with two main pathways involved with anti-viral immunity, the NFB and interferon pathways, downregulating them to keep off-target tissue damage at bay. NLRX1 is also involved in several other cellular processes, including modulating cell death processes and cellular metabolism which can also impact viral replication and clearance indirectly. In this work, we investigated both the pro- and anti-inflammatory arms of the anti-SARS-CoV-2 response focusing on two key proteins – pro-inflammatory chemokine CXCL10 and immunoregulatory PRR NLRX1. The roles of these two proteins were explored utilizing transcriptomic analysis of both human and mouse RNA samples, immortalized cell culture work, humanized mouse models of SARS-CoV-2 infection, and mouse-adapted virus models to be able to utilize deficient mouse models. In this work we better characterize the immune response to SARS-CoV-2 and its related immune-driven pathobiology of disease. The data presented in this work continues to elucidate CXCL10's role as an important driver of viral clearance of SARS-CoV-2, translating data from human patient nasal swabs to the animal model of disease, exploring differential inflammation and immune responses in the absence of CXCL10. Additionally, the work shown here provides further understanding of NLRX1 and its role in antiviral immunity with the context of SARS-CoV-2 infection. The interactions between this protein and the virus remains to be fully characterized, however, it appears they have some degree of mutual inhibition as determined by animal and cell culture models. The culmination of work here emphasizes the importance for both the pro- and anti-inflammatory responses in SARS-CoV-2 infection and offers insight into two possible related targets for future drug development.
- Characterizing a Small Regulatory RNA in Brucella abortus Linked to Outer Membrane Stress ResistanceStoyanof, Stephen Tristan (Virginia Tech, 2023-12-14)Brucella abortus is a bacterial species that infects cattle, elk, and bison herds worldwide and is a causative agent of brucellosis. B. abortus is a common form of zoonosis, as incidental spillover into the human population results in millions of infections annually. Current treatment options are limited to culling infected animals and treating humans with a rigorous antibiotic regimen, which still results in up to a 30% relapse rate. Detection of the pathogen is difficult due to the replicative niche residing within the host's immune cells, specifically macrophages and dendritic cells. Numerous small regulatory RNAs (sRNAs) were found to be expressed by B. abortus, and it was hypothesized that they may be important for virulence. One sRNA, when deleted, was shown to be linked to outer membrane stress resistance and was named MssR (membrane sensitivity sRNA). When the ΔmssR strain was tested in both macrophage and mouse models of infection, there were no virulence defects. Additionally, proteomic and transcriptomic studies of the ΔmssR strain showed very few dysregulated targets. Expression of mssR was tested under numerous biologically relevant conditions, and it was shown to be expressed significantly more during exponential phase of growth, compared to stationary phase. Initial microscopical analysis of mutant cells after treatment with sodium dodecyl sulfate (SDS_ did not reveal any morphological differences. It is unknown what contributes to the observed phenotypes and additional experiments are required to determine what is causing the perturbations in the outer membrane of the ΔmssR strain.
- The Direct Impact of Trimethelamine-N-Oxide on Cardiac FunctionZheng, Youjing (Virginia Tech, 2023-02-15)Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. The aging population and the rapidly increasing prevalence of obesity and type 2 diabetes will contribute to a growing epidemic of CVDs globally. Despite the extensive investigations in etiology, the pathogenesis of CVDs still not fully understand, and the treatment and prevention for CVDs are still limited. Significant interest has been raised in gut microbiota-host interaction since increasing evidence revealed that gut microbiomes play an important role in human health and diseases, including CVDs. Among more than two thousand gut microbiota metabolites, a compound named trimethylamine N-oxide (TMAO) was revealed to be closely related to CVDs. However, the impact of TMAO on cardiovascular health is still full of controversy and the direct impact of TMAO on heart tissue and cardiomyocytes has not been fully understood yet. In the first chapter, we reviewed the literature on TMAO-related atherosclerosis and cardiomyopathy to give us a general aspect of current research progress in the role of TMAO on CVDs. In this context, we provide an overview of the potential mechanisms underlying TMAO-induced cardiovascular diseases at the cellular and molecular levels, with a focus on atherosclerosis and cardiomyopathy. We also address the direct effects of TMAO on cardiomyocytes (a new and under-researched area) and finally propose TMAO as a potential biomarker and/or therapeutic target for the diagnosis and treatment of patients with CVDs. In the second chapter, the direct impact of TMAO on cardiac function was tested in vivo using wild-type C57B6L mice model. Four experiment groups were enrolled in the feeding protocol, which included 3w (different time points), 6w, and 13w feeding time to reveal the impact of short and longer periods of TMAO consumption on cardiac function. The plasma TMAO was measured by liquid chromatography-tandem mass spectrometry (LC/MS/MS) method at the end of the feeding protocol. Echocardiography and electrocardiography (ECG) were performed to assess the overall heart function. The histopathology staining was used to evaluate the cardiac microstructure change. By the end of the feeding protocol, the plasma TMAO all increased significantly in the TMAO group compared to the control no matter the TMAO feeding period. Echocardiography showed that 6w and 13w TMAO intake could significantly decrease cardiac contractility evidenced by decreased eject fraction (EF) and fraction shortening (FS). The electrocardiography (ECG) showed decreased R wave aptitude in 6w and 13w TMAO feed group with sinus rhythm. However, 3w TMAO intake had no impact on both cardiac contractability and ECG. Moreover, chronic TMAO supplement (13w) showed increased left ventricle (LV) mass on echocardiography and increased LV thickness on the tissue section. Further histology analysis revealed cardiomyocyte hypertrophy in the 13w TMAO-treated male group. Notably, the female mice showed significantly higher TMAO levels both in the control and treated group compared to the male, however, no gender difference was observed as to the ECG and echocardiography. In addition, the plasma inflammation cytokines were also analyzed and the tumor necrosis factor-α (TNF- α), interleukin 10 (IL-10), Fibroblast growth factor 2 (FGF β) and leptin were all increased in the 13w TMAO treated group compared to the control. These results suggest that chronic TMAO exposure led to increased plasma TMAO levels, which contribute to system inflammation and cardiac dysfunction due to cardiac hypertrophy in mice models. Research in chapter 3 demonstrates the potential underlying mechanisms of TMAO-induced cardiac dysfunction using adult mouse cardiomyocytes. In this study, we examined the direct effect of TMAO on reactive oxidative species (ROS) generation and factors related to cardiomyocyte contractibility, including, microtubule, Connexin43 (Cx43) expression, and gap junction intracellular communication (GJIC), intracellular calcium dynamics and transversal-tubule (T-tubule) both in acute and chronic TMAO challenge. Moreover, we also tested whether TMAO can enter cardiomyocytes directly. The results suggested that TMAO could enter cardiomyocytes through organic cation transporters (OCTs) and promote increased ROS generation via augmentation of NADPH oxidase 4 (Nox4). Moreover, both acute and chronic TMAO exposure could induce microtubule densification, which plays a critical role in intracellular protein transportation and cardiomyocyte morphology maintenance. We also demonstrated chronic TMAO exposure could inhibit the Cx43 expression at both cellular and tissue level, and therefore impact the GJIC for the first time. Besides, we also revealed that TMAO could interrupt intracellular calcium handling both acutely and chronically, especially documented by decreased efficiency in intracellular calcium removal, related to decreased sarcoplasmic reticulum Ca2+-ATPase (Serca2) expression. However, TMAO showed no impact on cardiomyocyte T-tubule network organization. Taken together, we demonstrated a direct destructive role of TMAO on cardiomyocytes' functional properties and provided a novel potential mechanism for TMAO-induced cardiac dysfunction. Overall, the research in this dissertation demonstrated the direct impact of TMAO on cardiomyocytes and cardiac function both in vivo and in vitro and evaluated the effect of TMAO both acutely and chronically. The TMAO can enter cardiomyocytes and induce Nox4-mediated oxidative stress, which could connect to multiple intracellular pathways, including microtubule densification, decreased Cx43 expression, and GJIC, as well as calcium handling dysfunction. Meanwhile, all these changes were closely related to the cardiomyocyte swelling observed in mice cardiac tissue after chronic TMAO consumption, which could ultimately contribute to cardiac contractile dysfunction and electrophysiology change in mice models.
- Dynamic Electrical Responses of Biological Cells and Tissue to Low- and High-Frequency Irreversible Electroporation WaveformsWhite, Natalie B. (Virginia Tech, 2021-04-23)Irreversible electroporation (IRE) is a local ablation technique that has been shown to be both safe and effective in the treatment of solid tumors. The treatment typically consists of inserting needle electrodes directly into the treatment zone and applying high-voltage pulses with widths on the order of hundreds of microseconds. These pulses permeabilize tissue leading to loss of homeostasis among the cells in the treatment zone. Predicting these treatments is challenging as the electric field (EF) induced through the electrode configuration is heterogeneous and is affected by several adjustable parameters. Computational treatment planning models aim to provide a visualization of the treatment zone, and they rely on two critical pieces of information: the electric field distribution (EFD) within the tissue, and the lethal EF threshold for the target tissue type. This work primarily aims to quantify tissue properties necessary for computing the EFD for any electrode configuration, for both traditional IRE as well as next-generation high-frequency IRE treatments. Also included is the determination of pancreatic tumor lethal EF threshold using collagen tissue mimics. Additionally, this work builds on previous reports of an optimal resistance reached during IRE by examining the changes in patients' immune cell populations following treatment, and proposing a method of optimizing these populations by monitoring real-time current achieved during IRE.
- Effective Strategies for Preventing and Mitigating Emerging VirusesChuong, Christina (Virginia Tech, 2023-05-08)The world is grappling with an escalating risk of viral outbreaks of pandemic proportion, with zoonotic RNA viruses such as chikungunya virus (CHIKV) and SARS-CoV-2 posing significant threats to global health. Several environmental and evolutionary factors have fueled the emergence and spread of infection, creating a constant arms race against emerging pathogens. Current prevention and mitigation strategies are inadequate, necessitating tools to prevent and control viral infections; innovative strategies are needed in the pipeline to address significant challenges. CHIKV is a mosquito-borne virus that has caused millions of disease cases worldwide and is a reemerging threat with increasing potential to become endemic in the US. Currently, there are no licensed treatments available to protect against CHIK disease, making the development of a vaccine crucial. Live-attenuated vaccines (LAVs) have traditionally been a promising strategy due to their high immunogenicity and cost-effectiveness. However, concerns regarding adverse side effects and the potential for viral replication leading to pathogenic reversions or transmission into mosquitoes have limited their use. To that end, we have developed a new generation of safer vaccines by modifying the standard LAV platform through innovative attenuating strategies. Our dual-attenuated platform utilizes a previously developed chimera of CHIKV and the closely related Semliki Forest virus (SFV) as a vaccine backbone which expresses antiviral mouse cytokines IFN-γ or IL-21, as an additional mechanism to control infection. In several mouse models, both cytokine-expressing candidates showed reduced footpad swelling and minimal to no systemic replication or dissemination capacity compared to the parental vaccine post-vaccination. Importantly, these candidates conferred full protection from wildtype CHIK disease. Our IFNγ-expressing vaccine showed the most significant attenuation of viral replication. To understand the underlying mechanism, we identified three IFNγ-regulated antiviral genes (Gbp1/2 and Ido1) that were highly upregulated in 3T3 mouse fibroblasts post-infection with the IFN-γ-expressing candidate but not the parental backbone. To further investigate the role of these genes in restricting viral replication and enhance the clinical relevance of our vaccine platform, we redesigned our vaccine to express human IFNγ (hIFNγ) and performed viral growth kinetics in MRC5 human lung fibroblasts. Our vaccine showed reduced viral replication compared to controls and high expression of human GBP1/2/3 was observed post-infection. Overexpression of these genes demonstrated a direct impact on viral replication against wildtype CHIKV. These findings shed light on the mechanism of action of our vaccine and highlight the potential of targeting IFNγ-regulated antiviral genes for developing effective vaccines against CHIKV. Our results provided a foundation for investigating the broad-use application of IFN-γ against other alphaviruses for vaccine or therapeutic design. We evaluated the effects of increasing levels of exogenous hIFNγ on Mayaro virus (MAYV), Ross River virus (RRV), and Venezuelan Equine Encephalitis virus (VEEV). We observed a positive dose-dependent relationship between hIFNγ and decreasing viral titers for all three viruses. Interestingly, we also observed similar patterns of GBP upregulation with MAYV and RRV, both Old World alphaviruses, but not with VEEV, a New World alphavirus. This finding may indicate an alternative IFNγ-stimulated pathway responsible for controlling different alphaviruses. Overall, these studies establish a fundamental role of IFNγ in controlling viral infection and highlight its potential use in both vaccine and therapeutic intervention. While LAVs are a gold standard for developing immunity against a virus, the urgency of responding to an active and deadly pandemic has promoted the use of faster strategies such as mRNA vaccines. Once the viral sequence was known, these vaccines were comparatively quick to produce for SARS-CoV-2 and prevented millions of disease cases at the height of their introduction. However, the emergence of variants of concerns bypassing previous immunization efforts has demonstrated the need for complementary treatments such as antivirals to control disease. To that end, we evaluated several rhodium organometallic complexes as potential antivirals against SARS-CoV-2. We show that two pentamethylcyclopentadienyl (Cp*) rhodium piano stool complexes, Cp*Rh(ICy)Cl2 and Cp*Rh(dpvm)Cl are non-toxic in Vero E6 and Calu3 cells and reduce SARS-CoV-2 plaque formation up to 99%. These complexes have previously demonstrated high antimicrobial activity against multiple antibiotic-resistance bacteria and with our results, support their potential application as pharmaceuticals, warranting further investigation into their activity.
- Effects of Irreversible Electroporation and High-Frequency Irreversible Electroporation for the Treatment of Breast CancerSaunier, Sofie Milou (Virginia Tech, 2023-06-26)Breast cancer (BC) is the second most common cause of cancer-related deaths for women in the United States, estimated to affect 1 in 8 women. Difficulties arise in BC treatment due to the hormone sensitivity and heterogeneity of the malignancies, and the poor prognosis after metastases. Due to the immense physical and psychological effects of conventional surgical methods, minimally invasive, non-thermal, focal electroporation-based ablation therapies are being investigated for the treatment of BC. Irreversible Electroporation (IRE) delivers a series of long, monopolar electrical pulses via electrodes inserted directly into the targeted tissue which disrupt cellular membranes by creating nano-scale pores, killing the cells via loss of homeostasis while promoting an immune response. However, IRE requires cardiac synchronization and a full-body paralytic to mitigate unwanted muscle contractions, which motivated the creation of second generation High-Frequency IRE or H-FIRE. H-FIRE delivers short, bipolar pulses to destroy cancer cells without muscle contractions and nerve excitation, and allows for more tunable treatment parameters. Throughout my thesis, I discuss investigations of H-FIRE for the treatment of triple-negative and hormone-sensitive BC cell lines and compare efficacy to IRE outcomes. To further establish the translation and understanding of H-FIRE for BC applications, my master's thesis focuses on: (1) determining the lethal electric field threshold of both cell lines in a 3D hydrogel matrix after H-FIRE and IRE; and (2) employ those values in a single bipolar probe numerical model to simulate in vivo treatments. The culmination of this thesis advances the use of H-FIRE in breast tissues, as well as demonstrates how in vitro data can be used to develop clinically relevant numerical models to better predict in vivo treatment outcome.
- Elucidating the role of peptidoglycan from Borrelia burgdorferi in Lyme disease pathogenesisMcClune, Mecaila Elizabeth (Virginia Tech, 2024-05-23)As of 2024, more than 50,000 people suffer from Lyme arthritis — a debilitating late-stage symptom of Lyme disease. Symptoms remain even after the completion of antibiotic therapy and when there is no longer any indication of an active infection. Studies have found that a portion of the bacterial cell wall from the causative agent, Borrelia burgdorferi, is a persistent antigen in Lyme arthritis patients, lingering within the synovial fluid. This antigen, peptidoglycan, is recognized by the immune system in numerous ways. Multiple publications have shown that peptidoglycan is proinflammatory and can cause arthritis when injected in vivo. The same was found to be true for B. burgdorferi peptidoglycan. Studies focused on the structure of peptidoglycan from B. burgdorferi have shown atypical differences in both glycan and peptide chemistry that likely alter immune recognition. Due to a lack of necessary enzymes and transporters B. burgdorferi are unable to recycle their peptidoglycan as they elongate and produce daughter cells. This leads to a 45% reduction of their total cell wall that is released into the environment. The work detailed below focuses on this antigen to further our knowledge as to its in vivo biodistribution pattern, half-life, and ability to induce arthritis. For these experiments B. burgdorferi peptidoglycan (pBb PG) was purified, fluorescently labeled, and tracked in vivo to study its clearance pattern and rate. Three different mouse models for Lyme arthritis were utilized in these studies and all experienced persistence of B. burgdorferi peptidoglycan in their liver for upward of 20 days. There were differences in the rate of clearance between types of mice, suggesting the involvement of host genetics. Serum collected weekly throughout this experiment showed over a log fold change in the abundance of ALT and AST levels, which indicates liver dysfunction. Proteomic analysis of the livers of mice post pBb PG injection showed altered levels of proteins important for mitochondrial function and iron homeostasis. When human PBMCs were stimulated with PG from various bacteria it was found that at 12 h pBb PG differentially expressed genes involved in energy metabolic pathways, including oxidative phosphorylation and the citric acid cycle. A subset of Lyme disease patients continue to experience symptomology even after completion of multiple rounds of antibiotics. These patients are termed to have post treatment Lyme disease syndrome and typically experience fatigue as their most common symptom. This symptom in combination with the findings of this dissertation regarding the link between pBb PG and energy metabolism warrants further investigation. Especially since this biopolymer has been found to persist in the synovial fluid of Lyme arthritis patients. Better understanding how these processes are connected could allow for the eventual development of a way to target this material for clearance, or ways to inactivate it. Both options have the potential to help alleviate the devastating symptomology experienced by patients.
- Focused Ultrasound Extraction (FUSE) for Formalin-Fixed, Paraffin Embedded (FFPE) DNA ExtractionMehochko, Isabelle Grace (Virginia Tech, 2023-07-10)Formalin-fixed, paraffin embedded (FFPE) tissue is the most abundant, accessible, and versatile tissue sample type available for genetic research and clinical applications. However, FFPE DNA extraction presents unique challenges and requires lengthy incubation periods, which can be impractical for certain applications. Here, we propose the use of focused ultrasound extraction (FUSE) technology for improved DNA extraction from FFPE tissue. FUSE generates a dense bubble cloud of acoustic cavitation capable of ablating tissue into an acellular lysate. FUSE treatment was applied to de-paraffinized porcine pancreas FFPE scrolls, followed by heated incubation for formaldehyde-induced DNA-protein crosslink reversal. When applied for 30 minutes, FUSE was found to successfully extract DNA from FFPE tissue as defined by increased DNA yield and improved purity ratios compared to conventional methods. DNA extracted via FUSE showed comparable fragmentation to conventional methods, and three out of four samples successfully amplified via PCR, indicating suitability for downstream analysis. These findings suggest that FUSE has the potential to increase the efficiency and effectiveness of DNA extraction from FFPE tissue. Further development and optimization of this protocol could develop a streamlined, easy to use extraction method that would simplify FFPE DNA extraction methods and address the primary time constraints which currently make FFPE DNA extraction time-consuming and impracticable for high-throughput applications.
- HDAC6 Deletion Decreases Pristane-Induced Inflammation and LupusXu, Dao (Virginia Tech, 2024-05-24)Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder often occurring in women of childbearing age. SLE is characterized by pathogenic antibody production and inflammation. Histone deacetylase (HDAC) 6 is a class IIb histone deacetylase member. HDAC6 has the ability to catalyze the removal of acetyl groups from lysine residues on non-histone proteins. It has been observed that in lupus mouse models, specific HDAC6 inhibition reduces inflammation. Administration of pristane, a naturally occurring hydrocarbon oil, can result in lupus-like illness and persistent inflammation. In our studies, 0.5 ml of pristane or phosphate buffered saline (PBS) was given intraperitoneally into sex- and age-matched wild type (WT) and HDAC6-/- mice on the C57BL/6 background at 8–12 weeks of age, and mice were euthanized 10 days or 8 months later. The animals were assessed as they aged. Short-term pristane treatment promoted the population of CD11b+Ly6C++ inflammatory monocytes and CD11b+Ly6G+ neutrophils. Peritoneal recruitment of these inflammatory monocytes and neutrophils in HDAC6-/- mice was significantly decreased compared to the WT mice. Pristane treatment also induced the interferon (IFN) signature genes as determined by RT-qPCR. Furthermore, IFN signature genes were decreased in HDAC6-/- mice compared to the WT mice. In vitro studies in J774 cells revealed that the selective HDAC6 inhibitor (ACY-738) increased acetylation of NF-κB while increasing STAT1-phosphorylation which caused the synthesis of inducible nitric oxide synthase (iNOS) in cells activated by LPS and IFN-γ. Long-term pristane treatment induced proteinuria in female mice although there were no significant differences between WT and HDAC6-/- animals. HDAC6 deletion significantly inhibited anti-double stranded (ds) DNA IgG level compared with WT mice. Moreover, HDAC6 deletion decreased some lymphocyte populations like T-helper 17 (Th17) cells after pristane treatment while not affecting other cell populations, such as regulatory T cells, total T cells, B cells, and plasma cells. Taken together, these results demonstrate that although HDAC6 inhibition may inhibit some inflammatory pathways, others remain unaffected.
- Integrated Multimodal Analysis: Evaluating the Impacts of Chemotherapy and Electroporation-Based Therapy on Lymphatic and Blood Microvasculature in CancerEsparza, Savieay Luis (Virginia Tech, 2024-06-05)The lymphatic and blood vascular systems are two important vessel networks that serve different roles in healthy states and in cancer. In breast cancer the most common cancer amongst women, mortality remains high despite increased treatment response due to metastatic spread, preferentially through the lymphatics. One aggressive subtype, triple negative breast cancer (TNBC) contributing to 15 to 30 percent of cases and is characterized by the absence of expression of three therapeutic biomarkers. As targeted therapy is limited, treatment relies on standard of care via surgery, radiotherapy, and chemotherapy with limited efficacy and increase in survival. Chemotherapies negatively alter the lymphatic vasculature benefiting the tumor, through lymphangiogenesis. This dissertation seeks to understand how the mechanisms of commonly used chemotherapeutics, like carboplatin, and a novel 2nd generation ablative therapy called High Frequency Irreversible Electroporation (H-FIRE), which utilizes electric pulses to ablate tumor cells, affect the lymphatic and blood microvasculature in the tumor, surrounding fat pad, tumor draining lymph node (TDLN) using multiple analysis methods. This occurred through three main methods 1) identification of oxidative stress effects of chemotherapeutic application of carboplatin on lymphatic endothelial cells in vitro, 2) characterization of lymphatic and blood microvascular dynamics in a 4T1 breast cancer mouse model treated with sub-ablative H-FIRE, 3) through the development of a novel habitat imaging method to identify treatment specific changes in the tumor draining lymph node, and the development of a hybrid agent-based model (ABM) to test cancer cell flow mediated invasion in brain cancer. Herin the work showed that carboplatin induced lymphatic phenotypic changes occurred through generation of reactive oxygen species dependent on VEGFR3 and was reversed through treatment with the antioxidant N-acetylcysteine. In the 4T1 model, sub ablation with H-FIRE induced temporal remodeling of the lymphatic and blood vasculature within the viable tumor, in the surrounding fat pad, and in the tumor draining lymph node over seven days, suggesting an optimal time of application of adjuvant therapy. The development of a habitat imaging analysis method to identify TDLN vascular habitats and the perturbation to treatment in a retrospective analysis of prior work. Lastly, the development of a hybrid ABM through the incorporation of experimentally measured fluid flow fields from dynamic contrast enhanced MRI imaging building upon existing work, and showing the usefulness in comparing mechanisms of cancer cell invasion mediated fluid flow. Altogether, this work presents novel insight into the lymphatic system in cancer within various treatments contexts and new methods of quantifying changes due to treatment. Hopefully, these findings can be used to further inform the field towards a more comprehensive understanding of treatment effects in breast cancer.
- Investigating MCE Chemical Library Drugs for Combinational Therapies for Clinical Aspergillus fumigatus isolatesBurns, Nicolas Dale (Virginia Tech, 2023-12-20)Aspergillus fumigatus is a globally present pathogen capable of inflicting debilitating and life-threatening opportunistic infections in individuals, primarily those who are immunocompromised. Diagnosing A. fumigatus infections is often difficult, leading to a delay in treatment which can greatly impact patient outcomes. Furthermore, our lessening of antifungal development combined with increasing resistance generates a feasible scenario where only last resort options are viable. This has prompted the World Health Organization (WHO) to declare this pathogen a "critical priority" due to increased resistance and rising mortality rates. Azoles are utilized as primary treatment options for Aspergillus fumigatus infections such as voriconazole (VRC), itraconazole (ITC), and posaconazole (POS) with a reserve of Amphotericin B (AmB). In the past two decades, the emergence of resistance to azoles has contributed to a 90% mortality rate in resistant cases globally. In this report, we investigated the MedChem Express (MCE) Drug Repurposing Compound Library (4,226 compounds) in conjunction with itraconazole at 0.06 µg/mL against A. fumigatus CDC #738. After the initial screening, we identified compounds known to be antifungals or antiseptics and deselected them. The remaining thirty selected compounds were evaluated through published literature and clinical trial data to determine those candidates with favorable characteristics/properties. Criteria for candidate selection consisted of evaluating the compounds; plasma concentration peak, the time to reach peak, protein binding, oral availability, and drug class. Six candidates were ranked the highest of the previous round –surprisingly 50% of those compounds were HIV drugs, cobicistat, elvitegravir, lopinavir. The remaining three selected compounds are penfluridol, rilapladib, and rolapitant. The combination of itraconazole (ITC), posaconazole (POS), and voriconazole (VRC), with the identified compounds demonstrated promising amounts of synergy, in resistant and susceptible isolates. Further investigation revealed novel properties of ITC and POS when in combination with our compounds of interest. Rilapladib was able to reverse POS, ITC, and VRC resistant strain(s) to a sensitive profile. Growth kinetic assays demonstrate potent anti-germination properties not seen before in the sub-inhibitory doses of azoles. This work demonstrates that high-throughput screening as a viable technique to identify robust antifungal synergizers, allowing for tenable translation to a clinical setting.
- Investigating the ablative and immunomodulatory effects of high frequency irreversible electroporation on osteosarcoma in-vitroPatwardhan, Manali Nitin (Virginia Tech, 2024-05-23)Osteosarcoma (OS) is the most common primary bone tumor with an annual incidence rate of 3-4 individuals per million particularly affecting children and young adults. The 5-year survival rate stands at 60-80% with the current standard of care for human OS patients who do not have metastatic disease at presentation, but this drops to 20% for patients with metastatic disease which frequently occurs in the lungs. OS is much more common in canines, with metastasis being the major contributor to mortality, the same as in humans. Metastatic OS warrants novel treatment strategies to improve prognosis and survival. High-frequency irreversible electroporation (H-FIRE) is a promising, non-thermal, minimally invasive technique that induces cell death by applying pulsed electric fields in targeted regions, potentially triggering an anti-tumor immune response that could also target and prevent metastases. Such a dual functionality of H-FIRE is uniquely suited to treat pulmonary metastatic OS. The goal of this thesis was to study the ablative and immunomodulatory effects of H-FIRE on OS in-vitro with the overall hypothesis that H-FIRE completely ablates OS cells, induces the release of damage-associated molecular patterns (DAMPs), and promotes pro-inflammatory immune activating signatures in macrophages and T cells. Using an in-vitro model, my master's thesis focused on 1) Determining the electric field strength that completely ablates OS cells 2) Evaluating the immunomodulatory effects of H-FIRE by co-culturing H-FIRE treated OS cells with macrophages and T cells separately. Our study has utilized murine, canine, and human OS and immune cells, thus demonstrating a unique cross-species approach, 3) Evaluating DAMPs (ATP, calreticulin, and HMGB1) post-H-FIRE ablation of human OS cells. Overall, our study showed that H-FIRE successfully ablated OS cells in-vitro, induced the release of DAMPs from treated cells, and promoted activation signatures in immune cells. This thesis provides foundational data for future investigations developing H-FIRE as an immunomodulatory strategy for treating metastatic OS.
- Mechanisms of Intercellular Communication During Breast Cancer Progression Through MetastasisWheeler, Christina Eileen (Virginia Tech, 2024-04-30)Breast cancer is the second leading cause of cancer-related death in women worldwide. Despite more frequent and efficient screening measures, subtype-specific treatments, and overall improved patient outcomes, metastasis remains difficult to treat and accounts for 90% of breast cancer patient deaths. While the role of intercellular communication in metastasis, either among cancer cells, or between cancer cells and the tumor microenvironment is well established, additional research on specific molecular and cellular mechanisms underlying these interactions is necessary to develop novel therapeutic strategies. One mechanism that facilitates metastasis is epithelial-mesenchymal transition (EMT), which can be induced in cancer cells following the secretion of growth factors by tumor-associated macrophages (TAMs). During EMT, epithelial cells lose their cell-cell junctions, resulting in an alteration of intercellular communication. One of the junctions lost during EMT is gap junctions composed of connexin43 (Cx43), however, this is paired with an increase in expression of cytoplasmic Cx43 which binds microtubules. To elucidate the role of cytoplasmic Cx43 during EMT and breast cancer metastasis, we utilize a Cx43 mutant that has reduced binding with microtubules. We demonstrate disruption of the interaction between Cx43 and microtubules decreases mesenchymal marker expression and cell migration in vitro during EMT, and reduces breast cancer metastasis to the lungs in vivo, identifying a novel non-junctional tumorigenic role for Cx43 in metastasis and a potential therapeutic target in the treatment of breast cancer.
- NF-kB Inducing Kinase (NIK) Influences Eosinophil Development, Survival, and PlasticityTrusiano, Briana Lynn (Virginia Tech, 2024-04-22)Hypereosinophilic (HES) syndrome is an umbrella term encompassing several disease subsets that affects humans and veterinary species, ultimately resulting in >1,500 eosinophils/uL circulating in the blood documented over six-months. This eventually culminates in end-organ infiltration and increased patient morbidity and mortality. In mice where the gene Map3k14 encoding NF -kB inducing kinase (NIK) is knocked out, a HES-like syndrome develops that is dependent on Th2 cells and cytokines. NIK is the upstream regulator of the noncanonical NF-kB pathway and is involved in lymphoid organ development, B cell lymphopoiesis, and myelopoiesis. In addition to regulating the noncanonical NF-kB pathway, NIK is also involved in regulation of kB dimers of the canonical NF-kB pathway and can function independent of NF-kB signaling by regulating lipid and glucose metabolism, mitochondrial, and RIP1 binding to influence cell survival and death. Despite previous studies performed in the Nik-/- model, the mechanisms underlying eosinophil development, plasticity, and fitness in conjunction with the bone marrow and splenic microenvironments have not been fully elucidated. In the present work, we reviewed current data exploring the influence of the noncanonical NF-kB pathway and NIK specifically on the development of acute myeloid leukemias (AMLs) and Myelodysplastic Syndrome (MDS) with a focus on how these mechanisms might induce subvariants of HES. We next examined the effect of NIK loss on eosinophilopoiesis within hematopoietic tissues in vivo and in various cell culture environments in vitro via cytology, histology, flow cytometry, FACS, positive cell selection, MTT assay, BrDU assay, and protein microarray analysis. Overall, our findings suggest that NIK influences eosinophil maturation, proliferation, metabolism, survival, and potentially plasticity in vivo and in vitro under different environmental conditions and Th2 cytokine influence. NIK loss was also associated with altered free and bound TNFR1 levels on day 13 in vitro. TNFR1 acts upstream of RIP1 and suggests that these differences may be due to NF-kB independent functions of NIK. Overall, these results provide further insight into the potential mechanisms underlying eosinophilopoiesis in the Nik-/- murine model. This information may prove useful in discovering new treatment options underlying subvariants of HES in both human and veterinary patients.
- Nlrp12 deficiency alters gut microbiota and ameliorates Fas(lpr)-mediated systemic autoimmunity in male miceAbdelhamid, Leila; Mao, Jiangdi; Cabana-Puig, Xavier; Zhu, Jing; Swartwout, Brianna K.; Edwards, Michael R.; Testerman, James C.; Michaelis, Jacquelyn S.; Allen, Irving Coy; Ahmed, S. Ansar; Luo, Xin M. (Frontiers, 2023-03)NLRP12 has dual roles in shaping inflammation. We hypothesized that NLRP12 would modulate myeloid cells and T cell function to control systemic autoimmunity. Contrary to our hypothesis, the deficiency of Nlrp12 in autoimmune-prone B6.Fas(lpr/lpr) mice ameliorated autoimmunity in males but not females. Nlrp12 deficiency dampened B cell terminal differentiation, germinal center reaction, and survival of autoreactive B cells leading to decreased production of autoantibodies and reduced renal deposition of IgG and complement C3. In parallel, Nlrp12 deficiency reduced the expansion of potentially pathogenic T cells, including double-negative T cells and T follicular helper cells. Furthermore, reduced pro-inflammatory innate immunity was observed, where the gene deletion decreased in-vivo expansion of splenic macrophages and mitigated ex-vivo responses of bone marrow-derived macrophages and dendritic cells to LPS stimulation. Interestingly, Nlrp12 deficiency altered the diversity and composition of fecal microbiota in both male and female B6/lpr mice. Notably, however, Nlrp12 deficiency significantly modulated small intestinal microbiota only in male mice, suggesting that the sex differences in disease phenotype might be gut microbiota-dependent. Together, these results suggest a potential pathogenic role of NLRP12 in promoting systemic autoimmunity in males. Future studies will investigate sex-based mechanisms through which NLRP12 differentially modulates autoimmune outcomes.
- Novel Approaches in Pancreatic Cancer Treatment: Bridging Mechanics, Cells, and ImmunityImran, Khan Mohammad (Virginia Tech, 2024-01-04)The heterogeneity of pancreatic cancer renders many available general therapies ineffective holding the five-year survival rate close to 10% for decades. Surgical resection eligibility, resistance to chemotherapy and limited efficacy of immunotherapy emphasize the dire need for diverse and innovative treatments to combat this challenging disease. This study evaluates co-therapy strategies that combine non-thermal, minimally invasive ablation technology and targeted drug delivery to enhance treatment efficacy. Our research begins by uncovering the multifaceted potential of Irreversible Electroporation (IRE), a cutting-edge non-thermal tumor ablation technique. This study demonstrates IRE-mediated ability to trigger programmed necrotic cell death, induce cell cycle arrest, and modulate immune cell populations within the tumor microenvironment. This transformation from a pro-tumor state to a proinflammatory milieu, enriched with cytotoxic T lymphocytes and neutrophils. IRE-induced proinflammation in the tumor site renders immunologically "cold" tumor into immunologically "hot" tumor and holds significant promise of improving treatment efficacy. Notably, IRE-treated mice exhibited an extended period of progression-free survival, implying clinical potential. The transient nature of these effects suggests potential mechanisms of tumor recurrence highlighting the need for further studies to maximize the efficacy of IRE. Our mechanistic studies evaluated the IFN-STAT1-PD-L1 feedback loop as a possible reason for pancreatic tumor recurrence. Our data also suggest a stronger IFN-PD-L1 feedback loop compared to mammary, osteosarcoma and glioblastoma tumors rendering pancreatic cancer immunologically "cold". This study also investigates the use of histotripsy (a non-thermal, noninvasive, nonionizing ultrasound-guided ablation modality) to treat pancreatic cancer utilizing a novel immunocompromised swine model. We successfully generated human orthotopic pancreatic tumors in the immune deficient pigs, which allowed for consequent investigation of clinical challenges presented by histotripsy. While rigorous clinical studies are indispensable for validation, the promise of histotripsy offers new hope for patients. In parallel, we used our immunocompromised swine model of orthotopic pancreatic cancer to investigate the SonoTran® system, which employs ultrasound-activated oscillating particles to enhance drug delivery within hard-to-reach tumors. Our study demonstrates that SonoTran® significantly enhances the intratumoral penetrance of therapeutic agents, including commonly used chemotherapy drugs like paclitaxel and gemcitabine. Additionally, SonoTran® improved delivery of the anti-epidermal growth factor (EGFR) monoclonal antibody, cetuximab- which is frequently used in cancer immunotherapy. Together, our findings address challenges in the delivery of a range of therapeutics while simultaneously exposing challenges like off-target damage. In conclusion, this study presents a multifaceted approach to confront the complex characteristics of pancreatic cancer. Given the variations in patient response and the complexity of the disease, it is clear that a singular solution is unlikely. Our research, which combines IRE, histotripsy, and SonoTran®, to interrogate a promising array of tools to tackle different challenges to provide tailored treatments. In the ever-evolving landscape of pancreatic cancer therapy, this research opens new avenues to investigate deeper into molecular mechanisms, co-therapy treatment options, future preclinical and clinical studies which eventually encourage the potential for improved patient outcomes.