Browsing by Author "Ellingson, Steven W."
Now showing 1 - 20 of 52
Results Per Page
Sort Options
- An 8 GHz Ultra Wideband Transceiver TestbedAgarwal, Deepak (Virginia Tech, 2005-10-07)Software defined radios have the potential of changing the fundamental usage model of wireless communications devices, but the capabilities of these transceivers are often limited by the speed of the underlying processors and FPGAs. This thesis presents the digital design for an impulse-based ultra wideband communication system capable of supporting raw data rates of up to 100 MB/s. The transceiver is being developed using software/reconfigurable radio concepts and will be implemented using commercially available off-the-shelf components. The receiver uses eight 1 GHz ADCs to perform time interleaved sampling at an aggregate rate of 8 Gsamples/s. The high sampling rates present extraordinary demands on the down-conversion resources. Samples are captured by the high-speed ADC and processed using a Xilinx Virtex-II Pro (XC2VP70) FPGA. The testbed has two components: a non real-time part for data capture and signal acquisition, and a real-time part for data demodulation and signal processing. The overall objective is to demonstrate a testbed that will allow researchers to evaluate different UWB modulation, multiple access, and coding schemes. As proof-of-concept, a scaled down prototype receiver which utilized 2 ADCs and a Xilinx Virtex-II Pro (XC2VP30) FPGA was fabricated and tested.
- Absolute Flux Density Measurement and Associated Instrumentation for Radio Astronomy below 100 MHzTillman, Richard Henry (Virginia Tech, 2016-08-23)This dissertation reports new measurements of the absolute flux densities of the brightest astrophysical sources visible from the northern hemisphere with O[10%] accuracy between 30-78 MHz. These measurements provide additional confidence in the existing understanding of the flux density spectra of these sources in this frequency range. This dissertation also reports new measurements of the antenna temperature due to the diffuse Galactic background between 30-78 MHz, addressing a paucity of existing measurements in this band. These measurements are relevant especially in the context of contemporary interest in radio astronomy and 21 cm cosmology in this frequency range. A new active antenna system and measurement technique were developed to facilitate these measurements. The antennas are simple, thin dipoles, allowing for accurate characterization. Amplification is preceded by notch filters to mitigate interference induced non-linearity. Previous efforts have used well matched antennas. The narrowband antennas and notch filters on the front end create large, frequency varying impedance mismatch that must be accounted for, and we demonstrate how this can be done. We present a novel in situ technique that uses the antenna temperature measurements to improve the calibration of the antennas and internal noise sources.
- Adaptive Pattern Modeling for Large Reflector AntennasSengupta, Ramonika (Virginia Tech, 2022-08-04)This thesis presents methods for modeling the pattern of large axisymmetric paraboloidal focus-fed reflector antenna systems. The intended application of these methods is to improve the performance of time-domain interference canceling (TDC) in radio astronomy. The first method yields a closed-form expression for the antenna pattern with parameters accounting for the focal ratio and feed pattern. In subsequent adaptive methods, parameters of this model are calculated using measurements of interference signals. The corrected pattern model improves the prediction of the change in the true pattern for future times. The methods are compared by (1) comparing the error in the pattern model with respect to the true pattern and (2) comparing the pattern value update period required to achieve a specified level of residual interference when used in TDC. The efficacy of the pattern modeling methods is demonstrated by showing that the error in the pattern model decreases and the pattern value needs to be updated at a much slower rate for effective TDC.
- An Analog/Mixed Signal FFT Processor for Ultra-Wideband OFDM Wireless TransceiversLehne, Mark (Virginia Tech, 2008-07-28)As Orthogonal Frequency Division Multiplexing (OFDM) becomes more prevalent in new leading-edge data rate systems processing spectral bandwidths beyond 1 GHz, the required operating speed of the baseband signal processing, specifically the Analog- to-Digital Converter (ADC) and Fast Fourier Transform (FFT) processor, presents significant circuit design challenges and consumes considerable power. Additionally, since Ultra-WideBand (UWB) systems operate in an increasingly crowded wireless environment at low power levels, the ability to tolerate large blocking signals is critical. The goals of this work are to reduce the disproportionately high power consumption found in UWB OFDM receivers while increasing the receiver linearity to better handle blockers. To achieve these goals, an alternate receiver architecture utilizing a new FFT processor is proposed. The new architecture reduces the volume of information passed through the ADC by moving the FFT processor from the digital signal processing (DSP) domain to the discrete time signal processing domain. Doing so offers a reduction in the required ADC bit resolution and increases the overall dynamic range of the UWB OFDM receiver. To explore design trade-offs for the new discrete time (DT) FFT processor, system simulations based on behavioral models of the key functions required for the processor are presented. A new behavioral model of the linear transconductor is introduced to better capture non-idealities and mismatches. The non-idealities of the linear transconductor, the largest contributor of distortion in the processor, are individually varied to determine their sensitivity upon the overall dynamic range of the DT FFT processor. Using these behavioral models, the proposed architecture is validated and guidelines for the circuit design of individual signal processing functions are presented. These results indicate that the DT FFT does not require a high degree of linearity from the linear transconductors or other signal processing functions used in its design. Based on the results of the system simulations, a prototype 8-point DT FFT processor is designed in 130 nm CMOS. The circuit design and layout of each of the circuit functions; serial-to-parallel converter, FFT signal flow graph, and clock generation circuitry is presented. Subsequently, measured results from the first proof-of-concept IC are presented. The measured results show that the architecture performs the FFT required for OFDM demodulation with increased linearity, dynamic range and blocker handling capability while simultaneously reducing overall receiver power consumption. The results demonstrate a dynamic range of 49 dB versus 36 dB for the equivalent all-digital signal processing approach. This improvement in dynamic range increases receiver performance by allowing detection of weak sub-channels attenuated by multipath. The measurements also demonstrate that the processor rejects large narrow-band blockers, while maintaining greater than 40 dB of dynamic range. The processor enables a 10x reduction in power consumption compared to the equivalent all digital processor, as it consumes only 25 mWatts and reduces the required ADC bit depth by four bits, enabling application in hand-held devices. Following the success of the first proof-of-concept IC, a second prototype is designed to incorporate additional functionality and further demonstrate the concept. The second proof-of-concept contains an improved version of the serial-to-parallel converter and clock generation circuitry with the additional function of an equalizer and parallel- to-serial converter. Based on the success of system level behavioral simulations, and improved power consumption and dynamic range measurements from the proof-of-concept IC, this work represents a contribution in the architectural development and circuit design of UWB OFDM receivers. Furthermore, because this work demonstrates the feasibility of discrete time signal processing techniques at 1 GSps, it serves as a foundation that can be used for reducing power consumption and improving performance in a variety of future RF/mixed-signal systems.
- Analysis of Path Loss from a Transmitter in an Aircraft Cabin to an Exterior Fuselage-Mounted AntennaWang-Hurst, Kathy Weiquan (Virginia Tech, 2007-12-04)It is important to investigate the threat posed to commercial aircraft by on board electronic transmitters in the passenger cabin and the cargo holds of large transport aircraft. These transmitters may be in the form of unintentional use of portable electronic devices or even intentional radio frequency (RF) threat sources from terrorists. Thus, it is of interest to determine the "interference path loss" (IPL) from a transmitting device inside the cabin of such aircraft to the antenna terminals of a potential victim system of the aircraft. Past studies have concentrated on measurements. These efforts to measure IPL directly have demonstrated that accurate and repeatible measurements are difficult to obtain. Very little modeling work has been done successfully to understand the IPL on aircraft. In this thesis, we propose a 3-step methodology to quantify the interference path loss (IPL). We then apply this methodology to a broad class of aircraft and show results. To validate our results, we compare our findings to known measurements and discuss possible sources of errors. Finally we suggest areas of improvement to our analysis and propose future work.
- Array Processing for Mobile Wireless Communication in the 60 GHz BandJakubisin, Daniel J. (Virginia Tech, 2012-11-09)In 2001, the Federal Communications Commission made available a large block of spectrum known as the 60 GHz band. The 60 GHz band is attractive because it provides the opportunity of multi-Gbps data rates with unlicensed commercial use. One of the main challenges facing the use of this band is poor propagation characteristics including high path loss and strong attenuation due to oxygen absorption. Antenna arrays have been proposed as a means of combating these effects. This thesis provides an analysis of array processing for communication systems operating in the 60 GHz band. Based on measurement campaigns at 60 GHz, deterministic modeling of the channel through ray tracing is proposed. We conduct a site-specific study using ray tracing to model an outdoor and an indoor environment on the Virginia Tech campus. Because arrays are required for antenna gain and adaptability, we explore the use of arrays as a form of equalization in the presence of channel-induced intersymbol interference. The first contribution of this thesis is to establish the expected performance achieved by arrays in the outdoor environment. The second contribution is to analyze the performance of adaptive algorithms applied to array processing in mobile indoor and outdoor environments.
- Attenuation Field Estimation Using Radio TomographyCooke, Corey (Virginia Tech, 2011-08-11)Radio Tomographic imaging (RTI) is an exciting new field that utilizes a sensor network of a large number of relatively simple radio nodes for inverse imaging, utilizing similar mathematical algorithms to those used in medical imaging. Previous work in this field has almost exclusively focused on device-free object location and tracking. In this thesis, the application of RTI to propagation problems will be studied-- specifically using RTI to measure the strength and location of attenuating objects in an area of interest, then using this knowledge of the shadowing present in an area for radio coverage prediction. In addition to radio coverage prediction, RTI can be used to improve the quality of RSS-based position location estimates. Because the traditional failing of RSS-based multilateration is ranging error due to attenuating objects, RTI has great potential for improving the accuracy of these estimates if shadowing objects are accounted for. In this thesis, these two problems will primarily be studied. A comparison with other inverse imaging, remote sensing, and propagation modeling techniques of interest will be given, as well as a description of the mathematical theory used for tomographic image reconstruction. Proof-of-concept of the efficacy of applying RTI to position location will be given by computer simulation, and then physical experiments with an RTI network consisting of 28 Zigbee radio sensors will be used to verify the validity of these assertions. It will be shown in this thesis that RTI does provide noticeable improvement in RSS-based position location accuracy in cluttered environments, and it produces much more accurate RSS estimates than a standard exponential path-loss model is able to provide.
- Characterization of Uplink Transmit Power and Talk Time in WCDMA NetworksBhupathi Raju, Arjun (Virginia Tech, 2008-07-15)As 3G handset manufacturers add more and more features such as multimedia applications, color displays, video cameras, web browsing, gaming, WLAN, and MP3 players, the current consumption of a handset is ever increasing. Of the many components, the RF power amplifiers receive the most attention as they draw significant battery current and continue to represent the largest power load on the battery. In order to improve the overall efficiency of a power amplifier, it is important to know the operating uplink transmit power levels of a mobile phone in the WCDMA network. The work in this thesis makes two major contributions. First is the characterization of uplink transmit power in WCDMA networks based on current network data (collected in AT&T's WCDMA network) and realistic usage scenarios. Second is an investigation of the relationship between the battery life and the probability distribution function of the transmit power. Another important finding is that the talk time estimates using field tests, lab testing and theoretical expressions all give results to within 5%. Based on these data, design goals for WCDMA power amplifiers (in order to improve the talk times significantly) are suggested. The output power levels where the PA efficiencies have to be improved in order to significantly increase the battery life of WCDMA handsets are presented.
- Coherent Mitigation of Radio Frequency Interference in 10-100 MHzLee, Kyehun (Virginia Tech, 2008-08-28)This dissertation describes methods of mitigating radio frequency interference (RFI) in the frequency range 10-100 MHz, developing and evaluating coherent methods with which RFI is subtracted from the afflicted data, nominally resulting in no distortion of the underlying signals. This approach is of interest in weak signal applications such as radio astronomy, where the signal of interest may have interference-to-noise ratio much less than one, and so can be easily distorted by other methods. Environmental noise in this band is strong and non-white, so a realistic noise model is developed, with which we characterize the performance of signal parameter estimation, a key component of the proposed algorithms. Two classes of methods are considered: "generic" parameter estimation/subtraction (PE/S) and a modulation-specific form known as demodulation-remodulation ("demod--remod") PE/S. It is demonstrated for RFI in the form of narrowband FM and Broadcast FM that generic PE/S has the problem of severely distorting underlying signals of interest and demod-remod PE/S is less prone to this problem. Demod-remod PE/S is also applied and evaluated for RFI in the form of Digital TV signals. In both cases, we compare the performance of the demod-remod PE/S with that of a traditional adaptive canceling method employing a reference antenna, and propose a hybrid method to further improve performance. A new metric for "toxicity" is defined and employed to determine the degree to which RFI mitigation damages the underlying signal of interest.
- Coordinated Beamforming for Millimeter-wave Terrestrial Peer-to-Peer Communication NetworksMarinkovich, Aaron James Angelo (Virginia Tech, 2020-10-14)Terrestrial mobile peer-to-peer millimeter wave networks will likely use beamforming arrays with narrow beams. Aligning narrow beams is difficult. One consideration for aligning narrow beams is co-channel interference. Beams can be aligned either on a per-link basis where co-channel interference is ignored, or on a global basis where co-channel interference is considered. One way to align beams on a global basis is coordinated beamforming. Coordinated beamforming can be defined as alignment of beams on a global basis, so as to jointly optimize the signal-to-interference-plus-noise ratio (SINR) of all links operating in a network. In this work, we explore coordinated beamforming in peer-to-peer networks and demonstrate its efficacy. Networks with varying numbers of links are simulated in scenarios with and without obstructions. The coordinated beamforming schemes presented in this work significantly improve link SINR statistics in these scenarios. Greater improvement was found in networks with higher numbers of links and in networks in terrain with obstructions.
- A Dedicated Search for Low Frequency Radio Transient Astrophysical Events using ETADeshpande, Kshitija Bharat (Virginia Tech, 2009-11-09)Astrophysical phenomena such as self-annihilation of primordial black holes (PBHs), gamma ray bursts (GRBs), and supernovae are expected to produce single dispersed pulses detectable in the low end of the radio spectrum. Analysis of these pulses could provide valuable information about the sources, and the surrounding and intervening medium. The Eight-meter-wavelength Transient Array (ETA) is a radio telescope dedicated to the search for these pulses in an 18 MHz bandwidth centered at 38 MHz. ETA consists of 10 dual-polarized active dipoles providing an all-sky field of view. This thesis describes the results of a search campaign using ETA, namely, a Crab giant pulse (CGP) search. CGPs are already known to exist, and thus provide an excellent diagnostic for system performance. We found 11 CGP candidates in 14 hours of data. Although there has not been a single compelling detection (signal-to-noise ratio > 6), our analysis shows that at least a few of these candidates may be CGPs. We also explain the analysis preparation for PBH and GRB searches. Additionally, we describe the instrument and a software "toolchain" developed for the analysis of data that includes calibration, radio frequency interference (RFI) mitigation, and incoherent dedispersion. A dispersed pulse simulation code was developed and used to test the toolchain. Finally, improvements are suggested.
- Design and Analysis of a Real-time Data Monitoring Prototype for the LWA Radio TelescopeVigraham, Sushrutha (Virginia Tech, 2011-02-01)Increasing computing power has been helping researchers understand many complex scientific problems. Scientific computing helps to model and visualize complex processes such as molecular modelling, medical imaging, astrophysics and space exploration by processing large set of data streams collected through sensors or cameras. This produces a massive amount of data which consume a large amount of processing and storage resources. Monitoring the data streams and filtering unwanted information will enable efficient use of the available resources. This thesis proposes a data-centric system that can monitor high-speed data streams in real-time. The proposed system provides a flexible environment where users can plug-in application-specific data monitoring algorithms. The Long Wavelength Array telescope (LWA) is an astronomical apparatus that works with high speed data streams, and the proposed data-centric platform is developed to evaluate FPGAs to implement data monitoring algorithms in LWA. The throughput of the data-centric system has been modeled and it is observed that the developed data-centric system can deliver a maximum throughput of 164 MB/s.
- Design and analysis of low frequency strut-straddling feed arrays for EVLA reflector antennasHarun, M.; Ellingson, Steven W. (American Geophysical Union, 2011-10-18)A new feed system is designed for operation below 100 MHz. The only existing system on the EVLA operating below 100 MHz is the "4 m" (74 MHz) system which uses crossed half-wave dipoles located in front of the Cassegrain subreflector as the feed. However, the dipole feeds of this system introduce blockage, and a reduction in system sensitivity (estimated to be similar to 6% at 1.4 GHz) is observed at higher frequency bands; hence the dipoles are removed most of the time. An alternative feed concept is therefore proposed in this paper. The proposed system appears to reduce sensitivity degradation at 1.4 GHz by 3% and thus might be permanently mounted. Moreover, the new system has sensitivity comparable to the existing system at frequencies below 100 MHz. The feed for this system consists of dipoles mounted between the adjacent struts of the reflector and is thus referred to as a strut-straddling feed array. This design and the analysis methodology used in this paper should be applicable in meeting the contiguous frequency coverage requirement (50-470 MHz) of the new low frequency system proposed for the EVLA. Also, it may be applied in the modification of other existing large reflector antennas for low frequency operation.
- Design of Ultrawideband Digitizing Receivers for the VHF Low BandTaylor, David Wyatt (Virginia Tech, 2006-05-09)The next generation of receivers for applications such as radio astronomy, spectrum surveillance, and frequency-adaptive cognitive radio will require the capability to digitize very large bandwidths in the VHF low band (30 to 100 MHz). However, methodology for designing such a receiver is not well established. The difficulties of this design are numerous. There are various man-made interferers occupying this spectrum which can block desired signals or spectrum, either directly or through intermodulation. The receivers will typically use simple (i.e., narrowband) antennas, so the efficiency of power transfer to the preamplifier needs to be carefully considered. This thesis takes these design challenges into account and produces a seven step design methodology for direct sampling wideband digitizing receivers. The methodology is then demonstrated by example for three representative receivers. Finally, improvements to the analysis are suggested.
- Detection and flux density measurements of the millisecond pulsar j2145-0750 below 100 mhzDowell, J.; Ray, P. S.; Taylor, G. B.; Blythe, J. N.; Clarke, Tracy E.; Craig, J.; Ellingson, Steven W.; Helmboldt, J. F.; Henning, P. A.; Lazio, T. J. W.; Schinzel, F.; Stovall, K.; Wolfe, C. N. (IOP Publishing, 2013-09-01)We present flux density measurements and pulse profiles for the millisecond pulsar PSR J2145-0750 spanning 37 to 81 MHz using data obtained from the first station of the Long Wavelength Array. These measurements represent the lowest frequency detection of pulsed emission from a millisecond pulsar to date. We find that the pulse profile is similar to that observed at 102 MHz. We also find that the flux density spectrum between approximate to 40 MHz to 5 GHz is suggestive of a break and may be better fit by a model that includes spectral curvature with a rollover around 730 MHz rather than a single power law.
- Development and Evaluation of the Ethernet Interface(s) for the Monitoring and Control System of a New Beamforming Radio TelescopeSrinivasan, Abirami (Virginia Tech, 2010-08-06)The Long Wavelength Array (LWA) is a large multi-purpose radio telescope, operating in frequencies between 10 and 88 MHz, designed for both long-wavelength astrophysics and ionospheric science. The LWA will eventually consist of 53 "stations", each consisting of 256 pairs of crossed-dipole antennas whose signals are formed into beams. The Monitoring and Control System (MCS), a subsystem of each LWA station, controls the station's subsystems and also monitors their status. This thesis addresses the interface-related features of MCS. The physical interface of the MCS with each subsystem is a Gigabit Ethernet connection and the interface protocol is User Datagram Protocol (UDP). An analysis of the throughput obtained through the interface using UDP is compared to that achieved using Transmission Control Protocol (TCP). It is seen that the throughput with UDP is 15\% better than with TCP, and that UDP is a better choice for the given requirements. Implementation of a new ionospheric calibration scheme requires that the MCS be capable of repointing between astronomical sources on a 5 ms time scale. The rate at which beams can be repointed is analyzed. It is confirmed that MCS is at least 2 orders of magnitude faster than necessary, and is limited by the ethernet network throughput. Python software that facilitates the development and testing of MCS and other subsystems have been developed, and are described.
- Device Shot Noise and Saturation Effects on Oscillator Phase NoiseBrock, Scott E. (Virginia Tech, 2006-09-08)Oscillator phase noise is an important factor in designing radio frequency (RF) communications hardware. Phase noise directly contributes to adjacent-channel interference and an increase in bit error rate (BER). Understanding the operation of an oscillator can help with the oscillator design process. Also, the understanding of the noise processes within an oscillator can add insight to the design process, allowing an intelligent low-noise design. It will be shown that although simulation software can be helpful, the understanding of the oscillator operation is a valuable tool in the design process. Oscillator design will be discussed, and then the noise processes of the oscillator will be investigated. A new method of decomposing shot noise into in-phase and quadrature components will be discussed. The noise processes discussed for a non-saturating bipolar junction transistor (BJT) Colpitts oscillator will be extended to the case of a saturating BJT Colpitts oscillator. This new method gives insight into the design of low-noise oscillators, and provides guidelines for design of low-noise oscillators. Example oscillators will support the theory and low-noise design guidelines. It will be seen that although designing an oscillator to saturate can provide a stable output level over a wide bandwidth, the added noise production may degrade the performance of the oscillator through both a lower effective Q and restricted signal level compared to the noise.
- Electromagnetic Vector-Sensor Direction-of-Arrival Estimation in the Presence of InterferenceTait, Daniel Beale (Virginia Tech, 2020-09-14)This research investigates signal processing involving a single electromagnetic vector-sensor, with an emphasis on the problem regarding signal-selective narrowband direction-of-arrival (DOA) estimation in the presence of interference. The approach in this thesis relies on a high-resolution ESPRIT-based algorithm. Unlike spatially displaced arrays, the sensor cannot estimate the DOA of sources using phase differences between the array elements, as the elements are spatially co-located. However, the sensor measures the full electromagnetic field vectors, so the DOA can be estimated through the Poynting vector. Limited information is available in the open literature regarding signal-selective DOA estimation for a single electromagnetic vector-sensor. In this thesis, it is shown how the Uni-Vector-Sensor-ESPRIT (UVS-ESPRIT) algorithm that relies on a time-series invariance and was originally devised for deterministic harmonic sources can be applied to non-deterministic sources. Additionally, two algorithms, one based on cyclostationarity and the other based on fourth-order cumulants, are formulated based on the UVS-ESPRIT algorithm and are capable of selectively estimating the source DOA in the presence of interference based on the statistical properties of the sources. The cyclostationarity-based UVS-ESPRIT algorithm is capable of selectively estimating the signal-of-interest DOA when the sources have the same carrier frequency, and thus overlap in frequency. The cumulant-based UVS-ESPRIT algorithm devised for this sensor relies on the independent component analysis algorithm JADE and is capable of selectively estimating the signal-of-interest DOA through the fourth-order cumulants only, is robust to spatially colored noise, and is capable of estimating the DOA of more sources than sensor elements.
- Electromagnetics, Volume 1Ellingson, Steven W. (VT Publishing, 2018-08)
Electromagnetics, volume 1 by Steven W. Ellingson is a 225-page, peer-reviewed open educational resource intended for electrical engineering students in the third year of a bachelor of science degree program. It is intended as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics. The book employs the “transmission lines first” approach in which transmission lines are introduced using a lumped-element equivalent circuit model for a differential length of transmission line, leading to one-dimensional wave equations for voltage and current. Note: Electromagnetics, volume 2 (2020) is now available at https://doi.org/10.21061/electromagnetics-vol-2. Suggested citation
Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0 Three formats of this book are available: - Print (ISBN 9780997920185) Available from Amazon.com - PDF (ISBN 9780997920192) - LaTeX source files Report adoption of this book here. If you are a professor reviewing, adopting, or adapting this textbook please help us understand your use by completing this form.
Additional resources - Problem sets and the corresponding solution manual. - Slides of figures used in and created for the book. - Errata for Volume 1 - Community portal for the Electromagnetics series - Faculty listserv for the Electromagnetics series - Submit feedback and suggestions - Independent Reviews Table of contents
Chapter 1: Preliminary Concepts
Chapter 2: Electric and Magnetic Fields
Chapter 3: Transmission Lines
Chapter 4: Vector Analysis
Chapter 5: Electrostatics
Chapter 6: Steady Current and Conductivity
Chapter 7: Magnetostatics
Chapter 8: Time-Varying Fields
Chapter 9: Plane Waves in Lossless Media
Appendixes A. Constitutive Parameters of Some Common Materials B. Mathematical Formulas C. Physical Constants
The Open Electromagnetics Project
Led by Steven W. Ellingson at Virginia Tech, the goal of the Open Electromagnetics Project is to create no-cost openly-licensed content for courses in engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources. Books in this series
Electromagnetics, Volume 1 https://doi.org/10.21061/electromagnetics-vol-1
Electromagnetics, Volume 2 https://doi.org/10.21061/electromagnetics-vol-2 To express your interest in a book or this series, please visit http://bit.ly/vtpublishing-updates This book improves on Electromagnetics Volume 1 (beta) with the investment of field testing, copyediting, and technical review. Changes include correction of errors identified in the beta version errata and many minor improvements, addition of an index, addition of a separate manual of examples and solutions, and LaTeX source files for the book. About the author
Steven W. Ellingson (ellingson@vt.edu) is an Associate Professor at Virginia Tech in Blacksburg, Virginia in the United States. He received PhD and MS degrees in Electrical Engineering from the Ohio State University and a BS in Electrical & Computer Engineering from Clarkson University. He was employed by the US Army, Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech, where he teaches courses in electromagnetics, radio frequency systems, wireless communications, and signal processing. His research includes topics in wireless communications, radio science, and radio frequency instrumentation. Professor Ellingson serves as a consultant to industry and government and is the author of Radio Systems Engineering (Cambridge University Press, 2016). Publication of this book was made possible in part by the Open Education Faculty Initiative Grant program at the University Libraries at Virginia Tech. http://guides.lib.vt.edu/oer/grants Cover design: Robert Browder
Cover image: (c) Michelle Yost. Total Internal Reflection (modified by Robert Browder) is licensed with a Creative Commons Attribution-ShareAlike 2.0 license - Electromagnetics, Volume 2Ellingson, Steven W. (Virginia Tech Publishing, 2020-01)
Electromagnetics, volume 2 by Steven W. Ellingson is a 216-page peer-reviewed open textbook designed especially for electrical engineering students in the third year of a bachelor of science degree program. It is intended as the primary textbook for the second semester of a two-semester undergraduate engineering electromagnetics sequence. The book addresses magnetic force and the Biot-Savart law; general and lossy media; parallel plate and rectangular waveguides; parallel wire, microstrip, and coaxial transmission lines; AC current flow and skin depth; reflection and transmission at planar boundaries; fields in parallel plate, parallel wire, and microstrip transmission lines; optical fiber; and radiation and antennas. Review or adopt this book
If you are an instructor reviewing, adopting, or adapting this textbook please help us understand your use by completing this form. Additional resources - Problem sets and the corresponding solution manuals - Slides of figures used in and created for the book - LaTeX sourcefiles - Screen-reader friendly version - Errata for Volume 2 - Collaborator portal for the Electromagnetics series - Faculty listserv for the Electromagnetics series - Submit feedback and suggestions Three formats of this book are available - Print (ISBN 9781949373912) Available from Amazon.com - PDF (ISBN 9781949373929) - LaTeX source files Table of contents
Chapter 1: Preliminary Concepts
Chapter 2: Magnetostatics Redux
Chapter 3: Wave Propagation in General Media
Chapter 4: Current Flow in Imperfect Conductors
Chapter 5: Wave Reflection and Transmission
Chapter 6: Waveguides
Chapter 7: Transmission Lines Redux
Chapter 8: Optical Fiber
Chapter 9: Radiation
Chapter 10: Antennas
Appendix A: Constitutive Parameters of Some Common Materials
Appendix B: Mathematical Formulas
Appendix C: Physical Constants The Open Electromagnetics Project
Led by Steven W. Ellingson at Virginia Tech, the goal of the Open Electromagnetics Project is to create no-cost openly-licensed content for courses in engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources. Books in this series
Electromagnetics, Volume 1 https://doi.org/10.21061/electromagnetics-vol-1
Electromagnetics, Volume 2 https://doi.org/10.21061/electromagnetics-vol-2 To express your interest in a book or this series, please visit http://bit.ly/vtpublishing-updates Suggested citation
Ellingson, Steven W. (2020) Electromagnetics, Vol. 2. Blacksburg, VA: Virginia Tech Publishing. https://doi.org/10.21061/electromagnetics-vol-2 CC BY-SA 4.0 About the author
Steven W. Ellingson (ellingson@vt.edu) is an Associate Professor at Virginia Tech in Blacksburg, Virginia in the United States. He received PhD and MS degrees in Electrical Engineering from the Ohio State University and a BS in Electrical & Computer Engineering from Clarkson University. He was employed by the US Army, Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech, where he teaches courses in electromagnetics, radio frequency systems, wireless communications, and signal processing. His research includes topics in wireless communications, radio science, and radio frequency instrumentation. Professor Ellingson serves as a consultant to industry and government and is the author of Radio Systems Engineering (Cambridge University Press, 2016). Publication of this book was made possible in part by the Open Education Faculty Initiative Grant program at the University Libraries at Virginia Tech. http://guides.lib.vt.edu/oer/grants Cover design: Robert Browder
Cover image: (c) Michelle Yost. Total Internal Reflection (modified by Robert Browder) is licensed with a Creative Commons Attribution-ShareAlike 2.0 license
- «
- 1 (current)
- 2
- 3
- »