Browsing by Author "Glegg, Stewart"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Bio-Inspired Control of Roughness and Trailing Edge NoiseClark, Ian Andrew (Virginia Tech, 2017-04-27)Noise from fluid flow over rough surfaces is an important consideration in the design and performance of certain vehicles with high surface-area-to-perimeter ratios. A new method of noise control based on the anatomy of owls is developed and consists of fabric or fibrous canopies suspended above the surface. The method is tested experimentally and is found to reduce the total far-field noise emitted by the surface. The treatment also is found to reduce the magnitude of pressure fluctuations felt by the underlying surface by up to three orders of magnitude. Experimental investigations into the effects of geometric parameters of the canopies lead to an optimized design which maximizes noise reduction. The results obtained during the canopy experiment inspired a separate new device for the reduction of trailing edge noise. This type of noise is generated by flow past the wing of an aircraft or the blades of a wind turbine, and is a source of annoyance for those in surrounding communities. The newly developed treatment consists of small fins, or "finlets," placed near the trailing edge of an airfoil. The treatment is tested experimentally at near-full-scale conditions and is found to reduce the magnitude of far-field noise by up to 10 dB. Geometric parameters of the finlets are tested to determine the optimal size and spacing of the finlets to maximize noise reduction. Follow-up computational and experimental studies reveal the fluid mechanics behind the noise reduction by showing that the finlets produce a velocity deficit in the flow near the trailing edge and limit the magnitude and spanwise correlation lengthscale of turbulence near the trailing edge, factors which determine the magnitude of far-field noise. In a final experiment, the finlets are applied to a marine propeller and are found to reduce not only trailing edge noise, but also noise caused by the bluntness of the trailing edge. The results of this experiment show the potential usefulness of finlets to reduce noise from rotating systems, such as fans or propellers, as well as from structures which feature blunt trailing edges.
- Bio-Inspired Trailing Edge Noise ControlClark, Ian; Alexander, William Nathan; Devenport, William J.; Glegg, Stewart; Jaworski, Justin; Peake, Nigel; Daly, Conor (Virginia Tech, 2015-06)Trailing edge noise remains a primary limiting factor in the widespread implementation of wind turbines, particularly near populated areas. Noise regulations commonly require acoustic de-rating of existing turbines, leading to reduced output and revenue. This presentation will describe an experimental study aimed at trailing edge noise control inspired by the unique features found on the wings of owls that use acoustic stealth while hunting prey. One of these features is a thin layer of fine hairs which grow from the exposed surfaces of the flight feathers. These hairs have been investigated and found to form a sort of canopy suspended above the surface of the owl's feathers. Previous wall-jet tunnel measurements have shown that high open-area canopies of similar characteristics can reduce surface pressure fluctuations on the underlying surface by as much as 30dB, and significantly attenuate roughness noise generated by that surface. In the present work, treatments designed to replicate the effects of the canopy in a form suitable for application to an airfoil have been designed and tested in the Virginia Tech Stability Wind Tunnel. Over 20 variants of these designs have been tested by performing aeroacoustic wind tunnel measurements on a tripped DU96-W180 airfoil at chord Reynolds numbers up to 3 million. Exact details of the treatments are not given here since they are the subject of a current patent application, but the treatments will be described during the presentation. Variations include treatment thickness, density, length, position relative to the trailing edge and the effectiveness of treating only one side of the trailing edge. The treatments were placed over the center-half span of the airfoil in the trailing edge region. Measurements included far-field acoustic data from a 117-microphone phased array and mean surface pressure data from 80 pressure taps distributed over the airfoil profile. For some conditions a rake of Pitot and static probes was used to measure profiles through the airfoil wakes and infer the drag using a momentum balance approach. Compared to the unmodified airfoil the treatments were found to be quite effective. Acoustic beamform maps and integrated spectra show up to 10dB of broadband attenuation of trailing edge noise in the vicinity of the treatment. The majority of the noise attenuation was observed in the frequency range above 1500Hz, but measurements below this frequency are inconclusive because of the large spot size of the phased array at these frequencies. The treatment remains effective throughout a wide parameter range and is not highly dependent on a particular geometry, but there appears to be strong potential for optimization. Treatments were found to be effective over an angle of attack range that extends over 10 degrees from zero lift. Compared to the unmodified airfoil, no additional noise was measured from the treated airfoil past this 10 degree range. The mean surface pressure data revealed that the presence of the treatment had little impact on the lift characteristics of the airfoil model. Drag rake results showed a small increase in drag proportional to the increase in wetted area resulting from the addition of the treatment to the unmodified airfoil.
- Experimental Analysis of Pressure Shielding Mechanisms in Bioinspired Unidirectional CanopiesHari, Nandita Nurani; Szöke, Máté; Devenport, William J.; Glegg, Stewart (American Institute of Aeronautics and Astronautics, 2022-11-01)Previous studies have demonstrated that treatments such as a canopy or finlets placed within a boundary layer can shield surfaces from unsteady pressure fluctuations without substantially compromising the aerodynamic per-formance. This paper describes research into fundamental mechanisms of this phenomenon known as pressure shielding. Unidirectional canopy is an idealized surface treatment which consists of a streamwise array of rods cantilevered at the downstream end, inspired from the downy coating on owls’ wings. Experiments show that such a canopy attenuates the surface pressure in two distinct frequency ranges. At low frequencies associated with convective scales much greater than the canopy height, the attenuation spectra show scaling on the Strouhal number based on canopy height. At high frequencies, associated with convective scales of the order of the canopy height or lower, a dissipation-type frequency scaling appears more appropriate. The ratio of streamwise distance over the height is an important parameter at the low-frequency regions of attenuation, while the open-area ratio controls the broadband magnitude of attenuation spectra. Spatial and temporal correlations further shed light on the effects of the canopy in reducing the larger, energetic turbulent structures associated with the wall jet unsteady surface pressure fluctuations.
- The Impact of Offshore Wind Turbines on Underwater Ambient Noise LevelsGlegg, Stewart (Virginia Tech, 2015-06)The underwater sound levels generated by offshore wind turbine farms is a concern because of the possible environmental impact on marine mammals. This paper will consider how sound generated by a wind turbine is transmitted into a shallow water channel. It is shown that the underwater sound levels can be calculated for a typical offshore wind turbine by using the theory of Chapman and Ward (1990) combined with aeroacoustic models of trailing edge noise on the wind turbine blades. A procedure is given for estimating the underwater sound levels from a wind turbine whose airborne noise levels are known. The results indicate that the sound levels are strongly modulated at the blade passing frequency, which leads to infrasound that is more easily detected than a continuous sound source of the same level.
- Inhomogeneous, Anisotropic Turbulence Ingestion Noise in Two Open Rotor ConfigurationsHickling, Christopher John (Virginia Tech, 2020-10-20)Two rotor configurations with different non-uniform inflows were studied: a rotor ingesting the wake of an upstream cylinder and a rotor ingesting a thick axially symmetric boundary layer from an upstream centerbody. In both cases, the undisturbed inflow was measured without the rotor present in order to characterize the inflow, in particular to calculate the unsteady upwash velocity distribution at the location of the rotor. In addition, detailed acoustic measurements were completed using a 251-channel large-area microphone array. In all, over 400 conditions covering different advance ratios, angles of yaw, and inflow conditions were measured. Measurements of the sound show that the source has a complex directivity, different from that of a streamwise aligned dipole, due to the inhomogeneous unsteady upwash distribution. In addition, observers at different far field locations will perceive sources from different locations on the rotor disk. The directivity is a function of both the rotor geometry and turbulent inflow. A simplified model of the sound source was developed using these inputs and accurately predicts trends observed in the far field noise. For the cylinder wake ingestion case, on-blade measurements of the flow field show that the wake is drawn to the center of the rotor disk with increasing thrust. This is particularly noticeable if the wake does not strike the center of the rotor disk. The effects of this flow distortion on the far field directivity are well predicted by the model. The effects of yaw to rotate the produced sound field can be inferred from this model as well. A novel beamforming procedure was used to isolate sources across the face of the rotor for the cylinder wake ingestion case for an upstream observer position. This method may be used to isolate different sound sources on a rotor if multiple sources are present or if different regions of the rotor disk need to be isolated. The directivity of a rotor ingesting an axially symmetric boundary layer is far less complex than the ingestion of a two-dimensional cylinder wake, but measurements still show the perceived source location shift with observer location. Overall, the proposed noise modeling technique is an efficient method to predict the directivity of turbulence ingestion noise for inhomogeneous inflows. This can enable quick absolute noise predictions at all far field locations using only a single point measurement or far field noise prediction to establish absolute levels.
- Measurement and Prediction of Rotor Noise Sources for sUAS in Outdoor and Laboratory EnvironmentsWhelchel, Jeremiah Mark (Virginia Tech, 2023-08-30)This work provides an experimental analysis of the acoustic footprint of a hexacopter in hover and low speed forward flight, comparison of aerodynamic performance and noise of eVTOL rotors operating in multiple facilities, and analysis of the noise associated with an outrunner brushless DC motor. Empirical and low-order models are used to predict aerodynamic performance, tonal noise, and broadband noise for isolated eVTOL rotors. In addition, a low noise, swept rotor design was evaluated. The acoustic footprint of a DJI Matrice 600 Pro hexacopter in hover and low speed forward flight was measured in the Virginia Tech Drone Park. The noise radiated by this vehicle was found to be dominated by tonal noise at low frequencies and dominated by broadband noise at high frequencies indicating that both are important when assessing the noise of these aircraft. Three distinct regions were observed in the frequency spectra of the noise. A-weighting measured acoustic spectra highlighted the importance of the mid-frequency broadband noise, in particular. The radiated noise in hover was also found to be similar to the noise of the vehicle during low-speed flyovers. Given this, significantly less complex measurements of an aircraft in hover or those associated with a rotor at static conditions may be used to assess the footprint of an eVTOL aircraft in low speed forward flight. The total vehicle noise was then decomposed by studying the performance and noise of isolated eVTOL rotors in multiple facilities and under different operating conditions. Facility effects on performance and noise were first assessed by experimentally studying two commercially available eVTOL rotors in an enclosed anechoic environment and an open environment. For experimental measurements that were conducted in the anechoic chamber, recirculation effects were shown to increase harmonic amplitudes more than 8 dB. Varying solidity screens were placed in the downstream wake of each rotor to delay the onset of recirculation. Placing the screens in the wake did not produce a noticeable effect on or delay recirculation within the confined testing environment. Measurements of the BPF and higher order harmonics of each rotor were found to be much more consistent in time when testing outdoors in an open-air environment. Amplitudes of these tones were also found to be like that of the spectral levels of the measurements conducted in the anechoic chamber once recirculation had been established. While the tonal levels were much more consistent throughout each measurement in the open-air environment, a significant amount of background noise was present and made characterizing the noise at low frequencies difficult. Environmental factors, mainly windspeed, were also found to impact the noise measurements which also added difficulty in characterizing the noise of the two tested rotors. In indoor facilities, the rotor inflow becomes contaminated due to recirculation shortly after the rotor reaches steady state and spectral levels of tones increased with increasing spectral averaging times. In outdoor environments, the inflow to the rotor disc becomes distorted due to changing wind conditions and turbulence in the atmosphere. Spectral levels of tones in the outdoor environment remained consistent in amplitude but exceeded those of the anechoic chamber significantly. Given this, environmental factors and recirculation were found to both increase the higher order harmonics. To mitigate these facility effects, measurements of force and noise were also conducted for the same two rotors in an anechoic open jet. Additionally, measurements were also conducted for a commercially available rotor along with a newly designed low noise swept rotor. Each of these rotors were tested in the anechoic open jet facility at static conditions and with the tunnel on. These measurements were accompanied with predictions of aerodynamic performance and tonal and broadband self-noise. BEMT was used to predict aerodynamic performance. Tonal noise associated with the rotor blade loading and thickness was predicted using F1A and rotor broadband self-noise was predicted using the model of BPM. The measured noise in this facility along with that from measurements in the anechoic chamber and outdoor environment were separated into tonal and broadband components by applying a phase averaging technique to the measured acoustic pressure time history. These results also show that in the indoor facility that the noise produced at the BPF is dominated by tonal sources, but the higher order harmonics can be attributed to broadband interactions particularly at static conditions. Broadband noise was drastically reduced by driving the tunnel at minimal inflow for the smallest rotor studied (R_tip= 120 mm). For the larger rotors (R_tip≥ 267 mm) broadband noise associated with BWI or TIN were not mitigated at low inflow speeds. Predictions of tonal noise at the BPF were within 3 dB for all observer locations when considering the smallest rotor studied. Predictions of the measured directivity at the BPF for the larger rotors were inaccurate although predictions of thrust agreed with the measured. The largest rotors tested were equal in diameter to that of the open jet inlet. Thus, the limits of the testing facility were exceeded and increased noise was produced as the rotor blades interacted with the shear layer of the open jet. Directivity patterns of each rotor were also found to vary with increasing rotational rate. Overall, these results show that for analyzing the noise at hover conditions, introducing a small amount of inflow may be a good option when trying to understand the tonal noise and allows one to characterize the tonal noise independent of the broadband. However, this was also shown to be heavily dependent on the rotor diameter with regards to the open jet inlet and experimentalist must take this into consideration. While these measurements provide an analysis of the noise in hover and low speed ascent, they do not assess the noise of the vehicle operating in forward flight. In forward flight the rotors are subjected to edgewise flows which have an effect on the radiated noise thus analyzing the noise of these rotors operating at an angle of attack to the incoming flow was assessed. These effects were investigated by experimentally measuring the performance and noise of the smallest rotor studied when operating at a yaw relative to the incoming flow. For increasing yaw at the examined wind tunnel velocities, the measured thrust was found to converge to the value for zero inflow. Contours of SPL as a function of yaw angle for no inflow and an inflow speed of 8 m/s showed spectral levels to be minimal for an in-plane observer from 5×BPF to 30×BPF. The broadband noise was found to increase significantly for increasing yaw angle and tunnel inflow speed. These results show once again that the broadband noise is especially important during forward flight and new methods that consider wake interaction are needed to predict the noise in this flight regime. The rotor geometric parameter of sweep was also assessed from measurements in the anechoic open jet by comparing the aerodynamic performance and noise of a commercially available 762 mm diameter CF30x10.5 T-motor eVTOL rotor to that of an in house designed low noise swept rotor. The addition of sweep was found to reduce noise associated with BWI or TIN as the separated broadband noise was found to be less than that of the commercially available rotor. Comparison of thrust at static conditions and with increasing advance ratios showed both rotors to have similar performance, thus the addition of sweep was effective at reducing noise without sacrificing performance. Lastly, the noise associated with the electric drive system of these aircraft which consists of an ESC and brushless DC motor was analyzed. Acoustic measurements were made with and without an acoustic enclosure installed on a brushless DC motor and was found to be effective at reducing noise associated with the electric motor. The effects of two ESC's as well as their switching rates were also studied. The noise was found to be similar for both ESCs at low frequencies. At high frequencies the measured noise spectrum was found to be different when controlling the motor with different ESC's and a higher switching rate was found to reduce the noise with increasing switching rate although not completely monotonically.
- Pressure Shielding Mechanisms in Bio-Inspired Unidirectional Canopy Surface TreatmentsNurani Hari, Nandita (Virginia Tech, 2022-06-27)Reduction of surface pressure fluctuations is desirable in various aerodynamic and hydrodynamic applications. Over the past few years, studies on canopy surface treatments have been conducted to investigate the fundamental mechanisms of surface pressure attenuation termed as pressure shielding. This work talks about the design, development and experimental testing of unidirectional canopy surface treatments which are evenly spaced arrays of streamwise rods placed parallel to the wall without an entrance condition. The canopy designs are based on surface treatments tested by Clark et al. (2014) inspired by the downy coating on owl wings. The main objective of the work is to establish fundamental physical and mathematical basis for treatments that shield aerodynamic surfaces from turbulent pressure fluctuations, while maintaining the wall-normal transport of momentum and low aerodynamic drag. Experimental testing of these canopy treatments are performed in the Anechoic Wall-Jet facility at Virginia Tech. Different canopy configurations are designed to understand the effect of various geometric parameters on the surface pressure attenuation. The treatment is found to exhibit broadband reduction in the surface pressure spectrum. Attenuation develops in two frequency regions which scale differently depending on two different mechanisms. Canopies seems to reduce the large-scale turbulent fluctuations up to nearly twice the height. Semi-analytical model is developed to predict surface pressure spectra in a wall-jet and canopy flow. The rapid term model shows that the inflection in the streamwise mean velocity profile is the most dominant source of surface pressure fluctuations. Synchronized pressure and velocity measurements elucidate significant features of the sources that could be affecting surface pressure fluctuations. Overall, this study explores the qualitative and quantitative physics behind pressure shielding mechanism which find application particularly in trailing edge noise reduction.
- Sound Radiated from Turbulent Flow over Two and Three-Dimensional Surface DiscontinuitiesAwasthi, Manuj (Virginia Tech, 2015-11-13)Measurements have been performed to understand the sound source mechanism in turbulent boundary layer flow over two and three-dimensional surface discontinuities whose height is smaller than the incoming boundary layer thickness. The work was performed in two different types of boundary layers: a wall-jet flow and a conventional high Reynolds boundary layer. In the wall-jet flow, measurements of far field sound from two-dimensional forward facing steps, gaps with rounded corners and swept forward facing steps with rounded corners were made. The sound from a forward facing step is shown to exhibit effects of non-compactness. Rounding the step corner results in consistent drop in sound levels but the directivity of the sound field remains unchanged. The sound from gaps is dominated by the forward step component and remains unaffected by rounding of the backward step portion. The sound from swept forward facing steps was found to approximately obey an acoustic sweep independence principle up to a sweep angle of 30 deg when the spanwise inhomogeneity in the flow is accounted for using a simple source distribution model. Sweep independence is also observed for steps with corner rounding radii up to 25% of the step height. The work performed in the high Reynolds number boundary layer included measurements on forward facing steps with rounded corners and a three-dimensional circular embossment with the same height as the forward step. The highest Reynolds number based on discontinuity height achieved in this work was approximately 93,000. The results show that rounding the forward step corner has the same qualitative effect on far field sound as in the wall-jet boundary layer. Quantitatively, for similar boundary layer edge velocity the sound is higher than in the wall-jet flow. The near field measurements show that the separation bubble downstream of the step shrinks as the step corner is rounded while the bubble upstream remains unaffected by it. The unsteady surface force in the lower half of the vertical face of the step was found to be independent of corner rounding. The force on the downstream surface shows similar character within the separation bubble for each rounding but decays faster with increasing downstream distance due to reduced bubble size. The unsteady force measurements were applied to the theory of Glegg et al. (2014) and the resultant of the unsteady forces on the vertical face and downstream surface placed at the top corner of the step is shown to qualitatively describe the far field sound. The acoustic sweep independence principle was applied to the far field sound from the circular embossment and it has been shown that the sound from the three-dimensional geometry can be predicted with reasonable accuracy using sound from a two-dimensional forward step with the same span.
- The Space-time Structure of an Axisymmetric Turbulent Boundary Layer Ingested by a RotorBalantrapu, Neehar Agastya (Virginia Tech, 2021-01-19)A low-speed, axisymmetric turbulent boundary layer under a strong adverse pressure gradient is experimentally studied for its relevance to marine applications, urban air-transportation and turbulence ingestion noise. The combined effect of lateral curvature and streamwise pressure gradient are examined on the mean flow, turbulence structure, velocity correlations and wall pressure fluctuations. Additionally, the upstream influence of a rotor operating in this flow is examined to improve the understanding of the turbulence necessary to develop advanced noise prediction tools. Measurements were made in Virginia Tech Stability tunnel documenting the flow over a 0.432-m diameter body-of-revolution comprised of a forward nose-cone, a constant diameter mid-body and a 20 degree tail-cone, at a length based Reynolds number of 1.2 million. The principal finding of this work is the resemblance of the boundary layer to a free-shear layer where the turbulence far from the wall plays a dominant role, unlike in the canonical case of the flat-plate boundary layer. The mean flow along the tail developed inflection points in the outer regions and the associated velocity and turbulence stress profiles were self-similar with a recently proposed embedded shear layer scaling. As the mean flow decelerates downstream, the large-scale motions energize and grow along with the boundary layer thickness; However, the structure is roughly self-similar with the shear-layer scaling, emphasizing the role of the shear-layer in the large-scale structure. Additionally, the correlation structure is discussed to provide information towards the development of turbulence models and aeroacoustic predictions. The associated wall pressure fluctuations, measured with a longitudinal array of microphones, evolved significantly downstream with the dimensional wall pressure spectra weakening by over 20-dB per Hz. However, the spectra collapsed to within 2-dB with the wall-wake scaling, where the pressure-scale is the wall shear stress, and the time-scale is derived from the boundary layer thickness and edge velocity. The success of this scaling, even in the viscous roll-off regions, suggests the increasing importance of the outer region on the near-wall turbulence and wall-pressure. Investigation of the space-time structure revealed the presence of a quasi-periodic feature with the conditional signature of a roller-eddy. The structure appeared to scale with the wall-wake scaling, and was found to convect downstream at speeds matching those at the inflection points (and outer turbulence peak). It is hypothesized that the outer region turbulence in strong adverse pressure gradient flow strongly drive the near-wall turbulence and therefore both the wall pressure and shear stress. Subsequent measurements made with the rotor operating at the tail, using high-speed particle image velocimetry, provided the space-time structure of the inflow turbulence as a function of the rotor thrust. The impact of the rotor on the mean flow, turbulence and correlation structure in the vicinity of the rotor is discussed to supply information towards validating numerical simulations and developing turbulence models that account for the distortion due to the rotor. This work was sponsored by the Office of Naval Research, in particular Drs. Ki-Han Kim and John Muench under grants N00014-17-1-2698 and N00014-20-1-2650.