Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI)
Permanent URI for this collection
Browse
Browsing Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI) by Department "Animal and Poultry Sciences"
Now showing 1 - 20 of 24
Results Per Page
Sort Options
- Comparison of Single-Breed and Multi-Breed Training Populations for Infrared Predictions of Novel Phenotypes in Holstein CowsMota, Lucio Flavio Macedo; Pegolo, Sara; Baba, Toshimi; Morota, Gota; Peñagaricano, Francisco; Bittante, Giovanni; Cecchinato, Alessio (MDPI, 2021-07-02)In general, Fourier-transform infrared (FTIR) predictions are developed using a single-breed population split into a training and a validation set. However, using populations formed of different breeds is an attractive way to design cross-validation scenarios aimed at increasing prediction for difficult-to-measure traits in the dairy industry. This study aimed to evaluate the potential of FTIR prediction using training set combining specialized and dual-purpose dairy breeds to predict different phenotypes divergent in terms of biological meaning, variability, and heritability, such as body condition score (BCS), serum β-hydroxybutyrate (BHB), and kappa casein (k-CN) in the major cattle breed, i.e., Holstein-Friesian. Data were obtained from specialized dairy breeds: Holstein (468 cows) and Brown Swiss (657 cows), and dual-purpose breeds: Simmental (157 cows), Alpine Grey (75 cows), and Rendena (104 cows), giving a total of 1461 cows from 41 multi-breed dairy herds. The FTIR prediction model was developed using a gradient boosting machine (GBM), and predictive ability for the target phenotype in Holstein cows was assessed using different cross-validation (CV) strategies: a within-breed scenario using 10-fold cross-validation, for which the Holstein population was randomly split into 10 folds, one for validation and the remaining nine for training (10-fold_HO); an across-breed scenario (BS_HO) where the Brown Swiss cows were used as the training set and the Holstein cows as the validation set; a specialized multi-breed scenario (BS+HO_10-fold), where the entire Brown Swiss and Holstein populations were combined then split into 10 folds, and a multi-breed scenario (Multi-breed), where the training set comprised specialized (Holstein and Brown Swiss) and dual-purpose (Simmental, Alpine Grey, and Rendena) dairy cows, combined with nine folds of the Holstein cows. Lastly a Multi-breed CV2 scenario was implemented, assuming the same number of records as the reference scenario and using the same proportions as the multi-breed. Within-Holstein, FTIR predictions had a predictive ability of 0.63 for BCS, 0.81 for BHB, and 0.80 for k-CN. Using a specific breed (Brown Swiss) as the training set for prediction in the Holstein population reduced the prediction accuracy by 10% for BCS, 7% for BHB, and 11% for k-CN. Notably, the combination of Holstein and Brown Swiss cows in the training set increased the predictive ability of the model by 6%, which was 0.66 for BCS, 0.85 for BHB, and 0.87 for k-CN. Using multiple specialized and dual-purpose animals in the training set outperforms the 10-fold_HO (standard) approach, with an increase in predictive ability of 8% for BCS, 7% for BHB, and 10% for k-CN. When the Multi-breed CV2 was implemented, no improvement was observed. Our findings suggest that FTIR prediction of different phenotypes in the Holstein breed can be improved by including different specialized and dual-purpose breeds in the training population. Our study also shows that predictive ability is enhanced when the size of the training population and the phenotypic variability are increased.
- Cytokines That Serve as Embryokines in CattleEaly, Alan D.; Speckhart, Savannah L.; Wooldridge, Lydia K. (MDPI, 2021-08-05)The term “embryokine” has been used to denote molecules produced by the endometrium, oviduct, or by embryo itself that will influence embryo development. Several cytokines have been identified as embryokines in cattle and other mammals. This review will describe how these cytokines function as embryokines, with special emphasis being placed on their actions on in vitro produced (IVP) bovine embryos. Embryokines are being explored for their ability to overcome the poor development rates of IVP embryos and to limit post-transfer pregnancy retention efficiencies that exist in IVP embryos. This review will focus on describing two of the best-characterized cytokines, colony-stimulating factor 2 and interleukin 6, for their ability to modify bovine embryo quality and confirmation, promote normal fetal development, and generate healthy calves. Additional cytokines will also be discussed for their potential to serve as embryokines.
- Dietary Non-Drug Feed Additive as an Alternative for Antibiotic Growth Promoters for Broilers During a Necrotic Enteritis ChallengeCalik, Ali; Omara, Islam I.; White, Mallory B.; Evans, Nicholas P.; Karnezos, T. Peter; Dalloul, Rami A. (MDPI, 2019-08-13)Necrotic enteritis, caused by Clostridium perfringens, is an enteric disease that leads to poor performance and increased mortality, resulting in significant economic losses in poultry production. This study evaluated the effects of a proprietary prebiotic, probiotic, and plant extract blend on performance of broilers during coccidiosis challenge leading to necrotic enteritis (NE). In total, 744 Cobb500 male broilers were randomly allocated to 3 treatments (8 replicates, 31 birds/pen) including, the negative control (NC) fed a basal diet; the positive control (PC) fed a basal diet with Virginiamycin; and the additive group fed basal diet with a blend of prebiotic, probiotic, and plant extract (BSN). A unique, naturally occurring NE model developed to mimic field conditions was implemented to challenge the birds. This model consists of spraying a concentrated commercial coccidiosis vaccine on litter and feed upon bird placement, which, in conjunction with the presence of C. perfringens spores in the environment, leads to the development of a NE outbreak one week post vaccine application. At the onset of NE on d7, three birds/pen were selected for scoring NE lesions. Body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were recorded on days 7, 14, 28, and 42. Carcass composition was assessed by dual energy X-ray absorptiometry (DXA) analysis on day 42. Dietary supplementation of BSN significantly (p < 0.05) improved FCR during starter and grower periods. Dietary treatments had no effect on NE lesions in the small intestine. DXA analysis revealed slightly higher lean content in BSN birds compared to NC. These results showed that dietary supplementation of the BSN blend significantly improved broilers performance during the early NE challenge phase, as well as in the grower period.
- DNA Double-Strand Breaks Are a Critical Regulator of Fear Memory ReconsolidationNavabpour, Shaghayegh; Rogers, Jessie; McFadden, Taylor; Jarome, Timothy J. (MDPI, 2020-11-26)Numerous studies have shown that following retrieval, a previously consolidated memory requires increased transcriptional regulation in order to be reconsolidated. Previously, it was reported that histone H3 lysine-4 trimethylation (H3K4me3), a marker of active transcription, is increased in the hippocampus after the retrieval of contextual fear memory. However, it is currently unknown how this epigenetic mark is regulated during the reconsolidation process. Furthermore, though recent evidence suggests that neuronal activity triggers DNA double-strand breaks (DSBs) in some early-response genes, it is currently unknown if DSBs contribute to the reconsolidation of a memory following retrieval. Here, using chromatin immunoprecipitation (ChIP) analyses, we report a significant overlap between DSBs and H3K4me3 in area CA1 of the hippocampus during the reconsolidation process. We found an increase in phosphorylation of histone H2A.X at serine 139 (H2A.XpS139), a marker of DSB, in the Npas4, but not c-fos, promoter region 5 min after retrieval, which correlated with increased H3K4me3 levels, suggesting that the two epigenetic marks may work in concert during the reconsolidation process. Consistent with this, in vivo siRNA-mediated knockdown of topoisomerase II β, the enzyme responsible for DSB, prior to retrieval, reduced Npas4 promoter-specific H2A.XpS139 and H3K4me3 levels and impaired long-term memory, indicating an indispensable role of DSBs in the memory reconsolidation process. Collectively, our data propose a novel mechanism for memory reconsolidation through increases in epigenetic-mediated transcriptional control via DNA double-strand breaks.
- Early-Life Stress Induced Epigenetic Changes of Corticotropin-Releasing Factor Gene in Anorexic Low Body Weight–Selected ChicksXiao, Yang; Wang, Jinxin; Siegel, Paul B.; Cline, Mark A.; Gilbert, Elizabeth R. (MDPI, 2020-04-27)The expression of neuropeptide Y (NPY) in the arcuate nucleus (ARC) and corticotropin-releasing factor (CRF) in the paraventricular nucleus (PVN) were increased when low body weight–selected (LWS) line chicks, which are predisposed to anorexia, were subjected to a combination of nutritional and thermal stressors at hatch. We hypothesized that such changes resulted from epigenetic modifications. We determined global DNA methylation, DNA methyltransferase (DNMT) activity, and methylation near the promoter regions of NPY and CRF, in the hypothalamus of LWS chicks on day 5 post-hatch. Stress exposure at hatch induced global hypermethylation and increased DNMT activity in the ARC but not PVN. In the PVN of stressed LWS chicks, there was decreased methylation of a CpG site located at the core binding domain of methyl cytosine binding domain protein 2 (MBD2), near the CRF gene promoter. We then demonstrated that this was associated with disrupted binding of MBD2. There was also reduced utilization of yolk reserves and lean and fat masses in chicks that were stress-exposed. These findings provide novel insights on molecular mechanisms through which stressful events induce or intensify anorexia in predisposed individuals and a novel molecular target for further studies.
- Effect of Different Selection Criteria on Performance, Carcass and Meat Quality of Nellore Young BullsSilva, Juliana; Cônsolo, Nara Regina Brandão; Buarque, Vicente Luiz Macedo; Beline, Mariane; da Silva Martins, Taiane; Lobo, Annelise Aila Gomes; Gómez, Juan Fernando Morales; Eler, Joanir Pereira; Leme, Paulo Roberto; Netto, Arlindo Saran; Gerrard, David E.; Baldi, Fernando; Silva, Saulo Luz (MDPI, 2021-03-29)This study was carried out to evaluate the effects of selection criteria for post-weaning daily gain (PWDG) and early sexual heifer precocity (PP14) on the performance, carcass traits and meat quality of Nellore bulls. In year one, 50 animals were selected according to their expected progeny differences (EPDs) for PWDG and grouped as high (HG) or low (LG) groups. In year two, 50 animals were selected according to EPD for PP14 and also grouped as high (HP) or low (LP). After slaughter, samples of the longissimus muscle area (LMA) were used to evaluate meat quality. Most of performance traits were not affected by the selection criteria. However, the HG group had higher dressing percentage (p = 0.028), LMA (p = 0.02) and fat trim in the forequarter (p = 0.04) compared to the LG group. The HP group tended to have greater dry matter intake (p = 0.08), LMA (p = 0.05), rump fat (p = 0.04), heavier striploins (p = 0.07), tenderloins (p = 0.09) and briskets (p = 0.08) compared with LP group. In conclusion, the selection based on divergent groups PWDG or PP14 has a small impact on performance, carcass and meat quality traits.
- Effect of Environmental Complexity and Stocking Density on Fear and Anxiety in Broiler ChickensAnderson, Mallory G.; Campbell, Andrew M.; Crump, Andrew; Arnott, Gareth; Newberry, Ruth C.; Jacobs, Leonie (MDPI, 2021-08-12)Barren housing and high stocking densities may contribute to negative affective states in broiler chickens, reducing their welfare. We investigated the effects of environmental complexity and stocking density on broilers’ attention bias (measure of anxiety) and tonic immobility (measure of fear). In Experiment 1, individual birds were tested for attention bias (n = 60) and in Experiment 2, groups of three birds were tested (n = 144). Tonic immobility testing was performed on days 12 and 26 (n = 36) in Experiment 1, and on day 19 (n = 72) in Experiment 2. In Experiment 1, no differences were observed in the attention bias test. In Experiment 2, birds from high-complexity pens began feeding faster and more birds resumed feeding than from low-complexity pens following playback of an alarm call, suggesting that birds housed in the complex environment were less anxious. Furthermore, birds housed in high-density or high-complexity pens had shorter tonic immobility durations on day 12 compared to day 26 in Experiment 1. In Experiment 2, birds from high-density pens had shorter tonic immobility durations than birds housed in low-density pens, which is contrary to expectations. Our results suggest that birds at 3 weeks of age were less fearful under high stocking density conditions than low density conditions. In addition, results indicated that the complex environment improved welfare of broilers through reduced anxiety.
- Habituation Protocols Improve Behavioral and Physiological Responses of Beef Cattle Exposed to Students in an Animal Handling ClassUjita, Aska; Seekford, Zachary; Kott, Michelle L.; Goncherenko, Guillermo; Dias, Nicholas W.; Feuerbacher, Erica N.; Bergamasco, Luciana; Jacobs, Leonie; Eversole, Dan Edward; Negrão, João A.; Mercadante, Vitor R. G. (MDPI, 2021-07-21)Our objective was to determine the impact of different habituation protocols on beef cattle behavior, physiology, and temperament in response to human handling. Beef heifers were exposed to three habituation strategies: (1) tactile stimulation (brushing) in the working chute for seven consecutive days (STI; n = 18); (2) passage through the working chute for seven consecutive days (CHU; n = 19) and; (3) no habituation (CON; n = 19). Individual heifer respiratory rate (RR; n/min), internal vaginal temperature (VAGT; °C), and blood cortisol were measured. Further, behavior parameters were observed to generate a behavior score, and heifer interaction with students and their behavioral responses were recorded. Habituation with STI and CHU resulted in improved numerical behavioral scores compared to CON, and greater (p ≤ 0.05) handling latencies. Vaginal temperature was decreased in STI compared to CHU and CONT (p ≤ 0.05). Cortisol concentration did not differ among treatments, but decreased (p ≤ 0.05) from the start of the experiment to 14 days after treatment initiation. Both habituation protocols showed benefits, but heifers that received the positive tactile stimulation in the chute had the greatest behavior improvements. Furthermore, these heifers responded more calmly during student-animal interactions in class, which is beneficial for the students’ and animals’ safety.
- Haplotype Purging after Relaxation of Selection in Lines of Chickens That Had Undergone Long-Term Selection for High and Low Body WeightYang, Yunzhou; Zan, Yanjun; Honaker, Christa F.; Siegel, Paul B.; Carlborg, Örjan (MDPI, 2020-06-08)Bi-directional selection for increased and decreased 56-day body weights (BW56) has been applied to two lines of White Plymouth Rock chickens—the Virginia high (HWS) and low (LWS) body weight lines. Correlated responses have been observed, including negative effects on traits related to fitness. Here, we use high and low body weight as proxies for fitness. On a genome-wide level, relaxed lines (HWR, LWR) bred from HWS and LWS purged some genetic variants in the selected lines. Whole-genome re-sequencing was here used to identify individual loci where alleles that accumulated during directional selection were purged when selection was relaxed. In total, 11 loci with significant purging signals were identified, five in the low (LW) and six in the high (HW) body weight lineages. Associations between purged haplotypes in these loci and BW56 were tested in an advanced intercross line (AIL). Two loci with purging signals and haplotype associations to BW56 are particularly interesting for further functional characterization, one locus on chromosome 6 in the LW covering the sour-taste receptor gene PKD2L1, a functional candidate gene for the decreased appetite observed in the LWS and a locus on chromosome 20 in the HW containing a skeletal muscle hypertrophy gene, DNTTIP1.
- Heat Stress Reduces Metabolic Rate While Increasing Respiratory Exchange Ratio in Growing PigsFausnacht, Dane W.; Kroscher, Kellie A.; McMillan, Ryan P.; Martello, Luciane S.; Baumgard, Lance H.; Selsby, Joshua T.; Hulver, Matthew W.; Rhoads, Robert P. (MDPI, 2021-01-17)Heat stress (HS) diminishes animal production, reducing muscle growth and increasing adiposity, especially in swine. Excess heat creates a metabolic phenotype with limited lipid oxidation that relies on aerobic and anaerobic glycolysis as a predominant means of energy production, potentially reducing metabolic rate. To evaluate the effects of HS on substrate utilization and energy expenditure, crossbred barrows (15.2 ± 2.4 kg) were acclimatized for 5 days (22 °C), then treated with 5 days of TN (thermal neutral, 22 °C, n = 8) or HS (35 °C, n = 8). Pigs were fed ad libitum and monitored for respiratory rate (RR) and rectal temperature. Daily energy expenditure (DEE) and respiratory exchange ratio (RER, CO2:O2) were evaluated fasted in an enclosed chamber through indirect calorimetry. Muscle biopsies were obtained from the longissimus dorsi pre/post. HS increased temperature (39.2 ± 0.1 vs. 39.6 ± 0.1 °C, p < 0.01) and RER (0.91 ± 0.02 vs. 1.02 ± 0.02 VCO2:VO2, p < 0.01), but decreased DEE/BW (68.8 ± 1.7 vs. 49.7 ± 4.8 kcal/day/kg, p < 0.01) relative to TN. Weight gain (p = 0.80) and feed intake (p = 0.84) did not differ between HS and TN groups. HS decreased muscle metabolic flexibility (~33%, p = 0.01), but increased leucine oxidation (~35%, p = 0.02) compared to baseline values. These data demonstrate that HS disrupts substrate regulation and energy expenditure in growing pigs.
- Investigating the Impact of Brief Outings on the Welfare of Dogs Living in US SheltersGunter, Lisa M.; Gilchrist, Rachel J.; Blade, Emily M.; Barber, Rebecca T.; Feuerbacher, Erica N.; Platzer, JoAnna M.; Wynne, Clive D. L. (MDPI, 2021-02-19)Social isolation likely contributes to reduced welfare for shelter-living dogs. Several studies have established that time out of the kennel with a person can improve dogs’ behavior and reduce physiological measures of stress. This study assessed the effects of two-and-a-half-hour outings on the urinary cortisol levels and activity of dogs as they awaited adoption at four animal shelters. Dogs’ urine was collected before and after outings for cortisol:creatinine analysis, and accelerometer devices were used to measure dogs’ physical activity. In total, 164 dogs participated in this study, with 793 cortisol values and 3750 activity measures used in the statistical analyses. We found that dogs’ cortisol:creatinine ratios were significantly higher during the afternoon of the intervention but returned to pre-field trip levels the following day. Dogs’ minutes of low activity were significantly reduced, and high activity significantly increased during the outing. Although dogs’ cortisol and activity returned to baseline after the intervention, our findings suggest that short-term outings do not confer the same stress reduction benefits as previously shown with temporary fostering. Nevertheless, it is possible that these types of outing programs are beneficial to adoptions by increasing the visibility of dogs and should be further investigated to elucidate these effects.
- Microbiomes of Various Maternal Body Systems Are Predictive of Calf Digestive Bacterial EcologyOwens, Connor E.; Huffard, Haley G.; Nin-Velez, Alexandra I.; Duncan, Jane; Teets, Chrissy L.; Daniels, Kristy M.; Ealy, Alan D.; James, Robert E.; Knowlton, Katharine F.; Cockrum, Rebecca R. (MDPI, 2021-07-26)Body systems once thought sterile at birth instead have complex and sometimes abundant microbial ecosystems. However, relationships between dam and calf microbial ecosystems are still unclear. The objectives of this study were to (1) characterize the various maternal and calf microbiomes during peri-partum and post-partum periods and (2) examine the influence of the maternal microbiome on calf fecal microbiome composition during the pre-weaning phase. Multiparous Holstein cows were placed in individual, freshly bedded box stalls 14 d before expected calving. Caudal vaginal fluid samples were collected approximately 24 h before calving and dam fecal, oral, colostrum, and placenta samples were collected immediately after calving. Calf fecal samples were collected at birth (meconium) and 24 h, 7 d, 42 d, and 60 d of age. Amplicons covering V4 16S rDNA regions were generated using DNA extracted from all samples and were sequenced using 300 bp paired end Illumina MiSeq sequencing. Spearman rank correlations were performed between genera in maternal and calf fecal microbiomes. Negative binomial regression models were created for genera in calf fecal samples at each time point using genera in maternal microbiomes. We determined that Bacteroidetes dominated the calf fecal microbiome at all time points (relative abundance ≥42.55%) except for 24 h post-calving, whereas Proteobacteria were the dominant phylum (relative abundance = 85.10%). Maternal fecal, oral, placental, vaginal, and colostrum microbiomes were significant predictors of calf fecal microbiome throughout pre-weaning. Results indicate that calf fecal microbiome inoculation and development may be derived from various maternal sources. Maternal microbiomes could be used to predict calf microbiome development, but further research on the environmental and genetic influences is needed.
- Muscle Energy Metabolism, Growth, and Meat Quality in Beef CattleWicks, Jordan; Beline, Mariane; Gómez, Juan Fernando Morales; Luzardo, Santiago; Silva, Saulo Luz; Gerrard, David E. (MDPI, 2019-09-07)World meat production must increase substantially to support current projections in population growth over the next 30 years. However, maximizing product quality remains a focus for many in the meat industry, as incremental increases in product quality often signal potential increases in segment profitability. Moreover, increases in meat quality also address concerns raised by an ever-growing affluent society demanding greater eating satisfaction. Production strategies and valued endpoints differ worldwide, though this makes the global marketing of meat challenging. Moreover, this variation in production schemes makes it difficult for the scientific community to understand precisely those mechanisms controlling beef quality. For example, some cattle are produced in low input, extensive, forage-based systems. In contrast, some producers raise cattle in more intensive operations where feeding programs are strategically designed to maximal growth rates and achieve significant fat deposition. Yet, others produce cattle that perform between these two extremes. Fresh meat quality, somewhat like the variation observed in production strategies, is perceived differently across the globe. Even so, meat quality is largely predicated on those characteristics visible at the retail counter, namely color and perceived texture and firmness. Once purchased, however, the eating experience is a function of flavor and tenderness. In this review, we attempt to identify a few areas where animal growth may impact postmortem energy metabolism and thereby alter meat quality. Understanding how animals grow and how this affects meat quality development is incumbent to all vested in the meat industry.
- MUSTN1 mRNA Abundance and Protein Localization is Greatest in Muscle Tissues of Chinese Meat-Quality ChickensLi, Juan; Chen, Yang; Wang, Ya-Gang; Zhao, Xiaoling; Gilbert, Elizabeth R.; Liu, Yi-Ping; Wang, Yan; Hu, Yao-Dong; Zhu, Qing (MDPI, 2013-03-08)The Mustang, Musculoskeletal Temporally Activated Novel-1 Gene (MUSTN1) plays an important role in regulating musculoskeletal development in mammals. We evaluated the developmental and tissue-specific regulation of MUSTN1 mRNA and protein abundance in Erlang Mountainous (EM) chickens. Results indicated that MUSTN1 mRNA/protein was expressed in most tissues with especially high expression in heart and skeletal muscle. The MUSTN1 protein localized to the nucleus in myocardium and skeletal muscle fibers. There were significant differences in mRNA and protein abundance among tissues, ages and between males and females. In conclusion, MUSTN1 was expressed the greatest in skeletal muscle where it localized to the nucleus. Thus, in chickens MUSTN1 may play a vital role in muscle development.
- Necrotic Enteritis in Broiler Chickens: The Role of Tight Junctions and Mucosal Immune Responses in Alleviating the Effect of the DiseaseEmami, Nima K.; Calik, Ali; White, Mallory B.; Young, Mark; Dalloul, Rami A. (MDPI, 2019-07-31)Necrotic enteritis (NE) continues to present major challenges to the poultry industry, and the etiologic agent Clostridium perfringens is the fourth leading cause of bacterially-induced food- borne illnesses in the US. This study was designed to evaluate the effects of a probiotic during naturally occurring NE. On day of hatch, 1080 Cobb 500 male broilers were randomly allocated to three groups (12 replicate pens/treatment, 30 birds/pen) including (1) negative control (NC): corn-soybean meal diet; (2) positive control (PC): NC + 20 mg virginiamycin/kg diet (0.450 kg Stafac®20/ton); and (3) NC + PrimaLac (1.36 and 0.91 kg/ton from 1–21 and 22–42 days, respectively). One day (d) post placement, all birds were challenged by a commercial live oocyst coccidia vaccine as a predisposing factor to NE. Body weight and feed intake were measured at the onset of NE (d 8) and end of each feeding phase. On d 8, small intestines of two birds/pen were examined for NE lesions, and jejunum samples from one bird were collected for mRNA gene expression analysis of tight junction proteins, cytokines, and nutrient transporters. Data were analyzed using the JMP software and significance between treatments identified by LSD (p < 0.05). Compared to NC, supplementation of probiotic reduced d 1–42 mortality; however, PC was the only group with significantly lower mortality. Despite significantly improved feed conversion ratio (FCR) in PC and probiotic groups during d 1–42, average daily gain was only higher in PC (77.69 g/bird) compared with NC (74.99 g/bird). Furthermore, probiotic and PC groups had significantly reduced lesion scores in the duodenum and jejunum compared to NC. Expression of claudin-3 was higher, while expression of zonula occluden-2 tended (p = 0.06) to be higher in probiotic-supplemented birds compared to NC. Moreover, birds fed the probiotic diet had significantly higher expression of IL-10, IL-17, AMPK-α1, and SGLT1 mRNA compared to NC birds. The expression of PepT1 was higher for the probiotic-supplemented group compared to PC. IFN-γ expression was lower in PC compared to NC, while there was no difference between probiotic and NC. There were no differences in gene expression of sIgA, TNF-α, IL-1β, and IL-22 among treatments. Collectively, these data indicate that in a naturally occurring NE model, supplementation of a probiotic helps to improve FCR and reduce lesions, potentially due to the improvements in mRNA expression of tight junctions, cytokines, and nutrient transporters.
- Neonatal Phosphate Nutrition Alters in Vivo and in Vitro Satellite Cell Activity in PigsAlexander, Lindsey S.; Seabolt, Brynn S.; Rhoads, Robert P.; Stahl, Chad H. (MDPI, 2012-06-01)Satellite cell activity is necessary for postnatal skeletal muscle growth. Severe phosphate (PO4) deficiency can alter satellite cell activity, however the role of neonatal PO4 nutrition on satellite cell biology remains obscure. Twenty-one piglets (1 day of age, 1.8 ± 0.2 kg BW) were pair-fed liquid diets that were either PO4 adequate (0.9% total P), supra-adequate (1.2% total P) in PO4 requirement or deficient (0.7% total P) in PO4 content for 12 days. Body weight was recorded daily and blood samples collected every 6 days. At day 12, pigs were orally dosed with BrdU and 12 h later, satellite cells were isolated. Satellite cells were also cultured in vitro for 7 days to determine if PO4 nutrition alters their ability to proceed through their myogenic lineage. Dietary PO4 deficiency resulted in reduced (P < 0.05) sera PO4 and parathyroid hormone (PTH) concentrations, while supra-adequate dietary PO4 improved (P < 0.05) feed conversion efficiency as compared to the PO4 adequate group. In vivo satellite cell proliferation was reduced (P < 0.05) among the PO4 deficient pigs, and these cells had altered in vitro expression of markers of myogenic progression. Further work to better understand early nutritional programming of satellite cells and the potential benefits of emphasizing early PO4 nutrition for future lean growth potential is warranted.
- Overfeeding and Substrate Availability, But Not Age or BMI, Alter Human Satellite Cell FunctionFausnacht, Dane W.; McMillan, Ryan P.; Boutagy, Nabil E.; Lupi, Ryan A.; Harvey, Mordecai M.; Davy, Brenda M.; Davy, Kevin P.; Rhoads, Robert P.; Hulver, Matthew W. (MDPI, 2020-07-24)Satellite cells (SC) aid skeletal muscle growth and regeneration. SC-mediated skeletal muscle repair can both be influenced by and exacerbate several diseases linked to a fatty diet, obesity, and aging. The purpose of this study was to evaluate the effects of different lifestyle factors on SC function, including body mass index (BMI), age, and high-fat overfeeding. For this study, SCs were isolated from the vastus lateralis of sedentary young (18–30 years) and sedentary older (60–80 years) men with varying BMIs (18–32 kg/m2), as well as young sedentary men before and after four weeks of overfeeding (OVF) (55% fat/ + 1000 kcal, n = 4). The isolated SCs were then treated in vitro with a control (5 mM glucose, 10% fetal bovine serum (FBS)) or a high substrate growth media (HSM) (10% FBS, 25 mM glucose, and 400 μM 2:1 oleate–palmitate). Cells were assessed on their ability to proliferate, differentiate, and fuel substrate oxidation after differentiation. The effect of HSM was measured as the percentage difference between SCs exposed to HSM compared to control media. In vitro SC function was not affected by donor age. OVF reduced SC proliferation rates (–19% p < 0.05) but did not influence differentiation. Cellular proliferation in response to HSM was correlated to the donor’s body mass index (BMI) (r2 = 0.6121, p < 0.01). When exposed to HSM, SCs from normal weight (BMI 18–25 kg/m2) participants exhibited reduced proliferation and fusion rates with increased fatty-acid oxidation (p < 0.05), while SCs from participants with higher BMIs (BMI 25–32 kg/m2) demonstrated enhanced proliferation in HSM. HSM reduced proliferation and fusion (p < 0.05) in SCs isolated from subjects before OVF, whereas HSM exposure accelerated proliferation and fusion in SCs collected following OVF. These results indicated that diet has a greater influence on SC function than age and BMI. Though age and BMI do not influence in vitro SC function when grown in controlled conditions, both factors influenced the response of SCs to substrate challenges, indicating age and BMI may mediate responses to diet.
- Selection for Growth and Precocity Alters Muscle Metabolism in Nellore CattleCônsolo, Nara Regina Brandão; da Silva, Juliana; Buarque, Vicente Luiz Macedo; Higuera-Padilla, Angel; Barbosa, Luis Carlos Garibaldi Simon; Zawadzki, Andressa; Colnago, Luis Alberto; Netto, Arlindo Saran; Gerrard, David E.; Silva, Saulo Luz (MDPI, 2020-02-06)To clarify the relationship between beef genetic selection for growth and precocity with muscle metabolism and metabolites, we performed metabolomic analysis using Longissimus lumborum (LL) muscle from Nellore cattle with divergent selection for these traits (high growth, HG; low growth, LG; high precocity, HP; low precocity, LP). Genetic potential for growth affected muscle protein and energetic metabolism. HG animals had a high concentration of arginine, carnosine, and leucine compared to LG animals. HP animals presented a high concentration of glutamine, betaine, creatinine, isoleucine, carnitine, acetyl carnitine, and lower levels of glucose compared to LP animals, affecting protein and fatty acid metabolism. Intensity of selection (high or low) was correlated with changes in protein metabolism, and the type of selection (growth or precocity) affected fat metabolism. In conclusion, both HG and HP appear to be correlated with a high concentration of protein metabolites and changes in protein metabolic pathways, while selection for precocity is more correlated with changes in fat metabolism compared to animals selected for growth.
- Special Issue “Molecular Mechanisms of Memory Formation and Modification”Jarome, Timothy J.; Kwapis, Janine L. (MDPI, 2021-04-16)Memory is vital to human functioning and controls future behavioral responses [...]
- Transcriptome Response of Liver and Muscle in Heat-Stressed Laying HensWang, Yan; Jia, Xinzheng; Hsieh, John C. F.; Monson, Melissa S.; Zhang, Jibin; Shu, Dingming; Nie, Qinghua; Persia, Michael E.; Rothschild, Max F.; Lamont, Susan J. (MDPI, 2021-02-10)Exposure to high ambient temperature has detrimental effects on poultry welfare and production. Although changes in gene expression due to heat exposure have been well described for broiler chickens, knowledge of the effects of heat on laying hens is still relatively limited. In this study, we profiled the transcriptome for pectoralis major muscle (n = 24) and liver (n = 24), during a 4-week cyclic heating experiment performed on layers in the early phase of egg production. Both heat-control and time-based contrasts were analyzed to determine differentially expressed genes (DEGs). Heat exposure induced different changes in gene expression for the two tissues, and we also observed changes in gene expression over time in the control animals suggesting that metabolic changes occurred during the transition from onset of lay to peak egg production. A total of 73 DEGs in liver were shared between the 3 h heat-control contrast, and the 4-week versus 3 h time contrast in the control group, suggesting a core set of genes that is responsible for maintenance of metabolic homeostasis regardless of the physiologic stressor (heat or commencing egg production). The identified DEGs improve our understanding of the layer’s response to stressors and may serve as targets for genetic selection in the future to improve resilience.