Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI)
Permanent URI for this collection
Browse
Browsing Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI) by Department "Biological Systems Engineering"
Now showing 1 - 20 of 46
Results Per Page
Sort Options
- 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical ProductionGuo, Weihua; Sheng, Jiayuan; Feng, Xueyang (MDPI, 2015-12-25)Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms
- Assessing Strontium and Vulnerability to Strontium in Private Drinking Water Systems in VirginiaScott, Veronica; Juran, Luke; Ling, Erin; Benham, Brian L.; Spiller, Asa (MDPI, 2020-04-08)A total of 1.7 million Virginians rely on private drinking water (PDW) systems and 1.3 million of those people do not know their water quality. Because most Virginians who use PDW do not know the quality of that water and since strontium poses a public health risk, this study investigates sources of strontium in PDW in Virginia and identifies the areas and populations most vulnerable. Physical factors such as rock type, rock age, and fertilizer use have been linked to elevated strontium concentrations in drinking water. Social factors such as poverty, poor diet, and adolescence also increase social vulnerability to health impacts of strontium. Using water quality data from the Virginia Household Water Quality Program (VAHWQP) and statistical and spatial analyses, physical vulnerability was found to be highest in the Ridge and Valley province of Virginia where agricultural land use and geologic formations with high strontium concentrations (e.g., limestone, dolomite, sandstone, shale) are the dominant aquifer rocks. In terms of social vulnerability, households with high levels of strontium are more likely than the average VAHWQP participant to live in a food desert. This study provides information to help 1.7 million residents of Virginia, as well as populations in neighboring states, understand their risk of exposure to strontium in PDW.
- Assessing the Effects of Climate Change on Water Quantity and Quality in an Urban Watershed Using a Calibrated Stormwater ModelAlamdari, Nasrin; Sample, David J.; Steinberg, Peter; Ross, Andrew C.; Easton, Zachary M. (MDPI, 2017-06-27)Assessing climate change (CC) impacts on urban watersheds is difficult due to differences in model spatial and temporal scales, making prediction of hydrologic restoration a challenge. A methodology was developed using an autocalibration tool to calibrate a previously developed Storm Water Management Model (SWMM) of Difficult Run in Fairfax, Virginia. Calibration was assisted by use of multi-objective optimization. Results showed a good agreement between simulated and observed data. Simulations of CC for the 2041–2068 period were developed using dynamically downscaled North American Regional CC Assessment Program models. Washoff loads were used to simulate water quality, and a method was developed to estimate treatment performed in stormwater control measures (SCMs) to assess water quality impacts from CC. CC simulations indicated that annual runoff volume would increase by 6.5%, while total suspended solids, total nitrogen, and total phosphorus would increase by 7.6%, 7.1%, and 8.1%, respectively. The simulations also indicated that within season variability would increase by a larger percentage. Treatment practices (e.g., bioswale) that were intended to mitigate the negative effects of urban development will need to deal with additional runoff volumes and nutrient loads from CC to achieve the required water quality goals.
- Automatic Calibration Tool for Hydrologic Simulation Program-FORTRAN Using a Shuffled Complex Evolution AlgorithmSeong, Chounghyun; Her, Younggu; Benham, Brian L. (MDPI, 2015-02-04)Hydrologic Simulation Program-Fortran (HSPF) model calibration is typically done manually due to the lack of an automated calibration tool as well as the difficulty of balancing objective functions to be considered. This paper discusses the development and demonstration of an automated calibration tool for HSPF (HSPF-SCE). HSPF-SCE was developed using the open source software “R”. The tool employs the Shuffled Complex Evolution optimization algorithm (SCE-UA) to produce a pool of qualified calibration parameter sets from which the modeler chooses a single set of calibrated parameters. Six calibration criteria specified in the Expert System for the Calibration of HSPF (HSPEXP) decision support tool were combined to develop a single, composite objective function for HSPF-SCE. The HSPF-SCE tool was demonstrated, and automated and manually calibrated model performance were compared using three Virginia watersheds, where HSPF models had been previously prepared for bacteria total daily maximum load (TMDL) development. The example applications demonstrate that HSPF-SCE can be an effective tool for calibrating HSPF.
- Characterizing the Phenotypic Responses of Escherichia coli to Multiple 4-Carbon Alcohols with Raman SpectroscopyZu, Theresah N. K.; Athamneh, Ahmad I. M.; Senger, Ryan S. (MDPI, 2016-01-25)The phenotypic responses of E. coli cells exposed to 1.2% (v/v) of 1-butanol, 2-butanol, isobutanol, tert-butanol, and 1,4-butanediol were studied in near real-time using Raman spectroscopy. A method of “chemometric fingerprinting” was employed that uses multivariate statistics (principal component analysis and linear discriminant analysis) to identify E. coli phenotypic changes over a 180 min post-treatment time-course. A toxicity study showed extreme variability among the reduction in culture growth, with 1-butanol showing the greatest toxicity and 1,4-butanediol showing relatively no toxicity. Chemometric fingerprinting showed distinct phenotype clusters according to the type of alcohol: (i) 1-butanol and 2-butanol (straight chain alcohols); (ii) isobutanol and tert-butanol (branched chain alcohols); and (iii) control and 1,4-butanediol (no terminal alkyl end) treated cells. While the isobutanol and tert-butanol treated cells led to similar phenotypic responses, isobutanol was significantly more toxic. In addition, the phenotypic response was found to take place largely within 60 min of culture treatment; however, significant responses (especially for 1,4-butanediol) were still occurring at 180 min post-treatment. The methodology presented here identified different phenotypic responses to seemingly similar 4-carbon alcohols and can be used to study phenotypic responses of virtually any cell type under any set of environmental conditions or genetic manipulations.
- Deriving the Reservoir Conditions for Better Water Resource Management Using Satellite-Based Earth Observations in the Lower Mekong River BasinAli, Syed Azhar; Sridhar, Venkataramana (MDPI, 2019-12-03)The Mekong River basin supported a large population and ecosystem with abundant water and nutrient supply. However, the impoundments in the river can substantially alter the flow downstream and its timing. Using limited observations, this study demonstrated an approach to derive dam characteristics, including storage and flow rate, from remote-sensing-based data. Global Reservoir and Lake Monitor (GRLM), River-Lake Hydrology (RLH), and ICESat-GLAS, which generated altimetry from Jason series and inundation areas from Landsat 8, were used to estimate the reservoir surface area and change in storage over time. The inflow simulated by the variable infiltration capacity (VIC) model from 2008 to 2016 and the reservoir storage change were used in the mass balance equation to calculate outflows for three dams in the basin. Estimated reservoir total storage closely resembled the observed data, with a Nash-Sutcliffe efficiency and coefficient of determination more than 0.90 and 0.95, respectively. An average decrease of 55% in outflows was estimated during the wet season and an increase of up to 94% in the dry season for the Lam Pao. The estimated decrease in outflows during the wet season was 70% and 60% for Sirindhorn and Ubol Ratana, respectively, along with a 36% increase in the dry season for Sirindhorn. Basin-wide demand for evapotranspiration, about 935 mm, implicitly matched with the annual water diversion from 1000 to 2300 million m3. From the storage–discharge rating curves, minimum storage was also evident in the monsoon season (June–July), and it reached the highest in November. This study demonstrated the utility of remote sensing products to assess the impacts of dams on flows in the Mekong River basin.
- Design and Construction of Large Amyloid FibersRidgley, Devin M.; Rippner, Caitlin M. W.; Barone, Justin R. (MDPI, 2015-04-16)Mixtures of “template” and “adder” proteins self-assemble into large amyloid fibers of varying morphology and modulus. Fibers range from low modulus, rectangular cross-sectioned tapes to high modulus, circular cross-sectioned cylinders. Varying the proteins in the mixture can elicit “in-between” morphologies, such as elliptical cross-sectioned fibers and twisted tapes, both of which have moduli in-between rectangular tapes and cylindrical fibers. Experiments on mixtures of proteins of known amino acid sequence show that control of the large amyloid fiber morphology is dependent on the amount of glutamine repeats or “Q-blocks” relative to hydrophobic side chained amino acids such as alanine, isoleucine, leucine, and valine in the adder protein. Adder proteins with only hydrophobic groups form low modulus rectangular cross-sections and increasing the Q-block content allows excess hydrogen bonding on amide groups that results in twist and higher modulus. The experimental results show that large amyloid fibers of specific shape and modulus can be designed and controlled at the molecular level.
- Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer VaccineHu, He; Steinmetz, Nicole F. (MDPI, 2021-06-10)To develop a human epidermal growth factor receptor-2 (HER2)-specific cancer vaccine, using a plant virus-like particle (VLP) platform. Copper-free click chemistry and infusion encapsulation protocols were developed to prepare VLPs displaying the HER2-derived CH401 peptide epitope, with and without Toll-like receptor 9 (TLR9) agonists loaded into the interior cavity of the VLPs; Physalis mottle virus (PhMV)-based VLPs were used. After prime-boost immunization of BALB/c mice through subcutaneous administration of the vaccine candidates, sera were collected and analyzed by enzyme-linked immunosorbent assay (ELISA) for the CH401-specific antibodies; Th1 vs. Th2 bias was determined by antibody subtyping and splenocyte assay. Efficacy was assessed by tumor challenge using DDHER2 tumor cells. We successful developed two VLP-based anti-HER2 vaccine candidates—PhMV-CH401 vs. CpG-PhMV-CH401; however, the addition of the CpG adjuvant did not confer additional immune priming. Both VLP-based vaccine candidates elicited a strong immune response, including high titers of HER2-specific immunoglobulins and increased toxicity of antisera to DDHER2 tumor cells. DDHER2 tumor growth was delayed, leading to prolonged survival of the vaccinated vs. naïve BALB/C mice. The PhMV-based anti-HER2 vaccine PhMV-CH401, demonstrated efficacy as an anti-HER2 cancer vaccine. Our studies highlight that VLPs derived from PhMV are a promising platform to develop cancer vaccines.
- Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison with Traditional Aerial LidarResop, Jonathan P.; Lehmann, Laura; Hession, W. Cully (MDPI, 2019-04-12)Lidar remote sensing has been used to survey stream channel and floodplain topography for decades. However, traditional platforms, such as aerial laser scanning (ALS) from an airplane, have limitations including flight altitude and scan angle that prevent the scanner from collecting a complete survey of the riverscape. Drone laser scanning (DLS) or unmanned aerial vehicle (UAV)-based lidar offer ways to scan riverscapes with many potential advantages over ALS. We compared point clouds and lidar data products generated with both DLS and ALS for a small gravel-bed stream, Stroubles Creek, located in Blacksburg, VA. Lidar data points were classified as ground and vegetation, and then rasterized to produce digital terrain models (DTMs) representing the topography and canopy height models (CHMs) representing the vegetation. The results highlighted that the lower-altitude, higher-resolution DLS data were more capable than ALS of providing details of the channel profile as well as detecting small vegetation on the floodplain. The greater detail gained with DLS will provide fluvial researchers with better estimates of the physical properties of riverscape topography and vegetation.
- Drone-Based Community Assessment, Planning, and Disaster Risk Management for Sustainable DevelopmentWhitehurst, Daniel; Friedman, Brianna; Kochersberger, Kevin B.; Sridhar, Venkataramana; Weeks, James (MDPI, 2021-04-30)Accessible, low-cost technologies and tools are needed in the developing world to support community planning, disaster risk assessment, and land tenure. Enterprise-scale geographic information system (GIS) software and high-resolution aerial or satellite imagery are tools which are typically not available to or affordable for resource-limited communities. In this paper, we present a concept of aerial data collection, 3D cadastre modeling, and disaster risk assessment using low-cost drones and adapted open-source software. Computer vision/machine learning methods are used to create a classified 3D cadastre that contextualizes and quantifies potential natural disaster risk to existing or planned infrastructure. Building type and integrity are determined from aerial imagery. Potential flood damage risk to a building is evaluated as a function of three mechanisms: undermining (erosion) of the foundation, hydraulic pressure damage, and building collapse due to water load. Use of Soil and Water Assessment Tool (SWAT) provides water runoff estimates that are improved using classified land features (urban ecology, erosion marks) to improve flow direction estimates. A convolutional neural network (CNN) is trained to find these flood-induced erosion marks from high-resolution drone imagery. A flood damage potential metric scaled by property value estimates results in individual and community property risk assessments.
- An Engineered Reporter Phage for the Fluorometric Detection of Escherichia coli in Ground BeefChen, Anqi; Wang, Danhui; Nugen, Sam R.; Chen, Juhong (MDPI, 2021-02-19)Despite enhanced sanitation implementations, foodborne bacterial pathogens still remain a major threat to public health and generate high costs for the food industry. Reporter bacteriophage (phage) systems have been regarded as a powerful technology for diagnostic assays for their extraordinary specificity to target cells and cost-effectiveness. Our study introduced an enzyme-based fluorescent assay for detecting the presence of E. coli using the T7 phage engineered with the lacZ operon which encodes beta-galactosidase (β-gal). Both endogenous and overexpressed β-gal expression was monitored using a fluorescent-based method with 4-methylumbelliferyl β-d-galactopyranoside (MUG) as the substrate. The infection of E. coli with engineered phages resulted in a detection limit of 10 CFU/mL in ground beef juice after 7 h of incubation. In this study, we demonstrated that the overexpression of β-gal coupled with a fluorogenic substrate can provide a straightforward and sensitive approach to detect the potential biological contamination in food samples. The results also suggested that this system can be applied to detect E. coli strains isolated from environmental samples, indicating a broader range of bacterial detection.
- Estimating Floodplain Vegetative Roughness Using Drone-Based Laser Scanning and Structure from Motion PhotogrammetryPrior, Elizabeth M.; Aquilina, Charles A.; Czuba, Jonathan A.; Pingel, Thomas J.; Hession, W. Cully (MDPI, 2021-07-03)Vegetation heights derived from drone laser scanning (DLS), and structure from motion (SfM) photogrammetry at the Virginia Tech StREAM Lab were utilized to determine hydraulic roughness (Manning’s roughness coefficients). We determined hydraulic roughness at three spatial scales: reach, patch, and pixel. For the reach scale, one roughness value was set for the channel, and one value for the entire floodplain. For the patch scale, vegetation heights were used to classify the floodplain into grass, scrub, and small and large trees, with a single roughness value for each. The roughness values for the reach and patch methods were calibrated using a two-dimensional (2D) hydrodynamic model (HEC-RAS) and data from in situ velocity sensors. For the pixel method, we applied empirical equations that directly estimated roughness from vegetation height for each pixel of the raster (no calibration necessary). Model simulations incorporating these roughness datasets in 2D HEC-RAS were validated against water surface elevations (WSE) from seventeen groundwater wells for seven high-flow events during the Fall of 2018 and 2019, and compared to marked flood extents. The reach method tended to overestimate while the pixel method tended to underestimate the flood extent. There were no visual differences between DLS and SfM within the pixel and patch methods when comparing flood extents. All model simulations were not significantly different with respect to the well WSEs (p > 0.05). The pixel methods had the lowest WSE RMSEs (SfM: 0.136 m, DLS: 0.124 m). The other methods had RMSE values 0.01–0.02 m larger than the DLS pixel method. Models with DLS data also had lower WSE RMSEs by 0.01 m when compared to models utilizing SfM. This difference might not justify the increased cost of a DLS setup over SfM (~150,000 vs. ~2000 USD for this study), though our use of the DLS DEM to determine SfM vegetation heights might explain this minimal difference. We expect a poorer performance of the SfM-derived vegetation heights/roughness values if we were using a SfM DEM, although further work is needed. These results will help improve hydrodynamic modeling efforts, which are becoming increasingly important for management and planning in response to climate change, specifically in regions were high flow events are increasing.
- Factors Affecting Phosphorous in Groundwater in an Alluvial Valley Aquifer: Implications for Best Management PracticesFlores-López, Francisco; Easton, Zachary M.; Geohring, Larry D.; Vermeulen, Peter J.; Haden, Van R.; Steenhuis, Tammo S. (MDPI, 2013-05-02)Many streams in the US are impaired because of high Soluble Reactive Phosphorous (SRP) contributions from agriculture. However, the drivers of ecological processes that lead to SRP loss in baseflow from groundwater are not sufficiently understood to design effective Best Management Practices (BMPs). In this paper, we examine how soil temperature and water table depth influence the SRP concentrations in groundwater for a dairy farm in a valley bottom in the Catskills (NY, USA). Measured SRP concentrations in groundwater and baseflow were greater during the fall, when soil temperatures are warmer, than during winter and spring. The observed concentrations were within the bounds predicted by groundwater temperatures using the Arrhenius equation, except during fall, when concentrations rose above these predictions. These elevated concentrations were likely caused by mineralization and consequent accumulation of phosphorous (P) in summer. In addition, SRP concentrations were greater in near-stream areas, where water tables where higher. In short, SRP concentrations are dependent on temperature, demonstrating the importance of understanding the underlying mechanism of ecological processes. In addition, results suggest BMPs that apply manure on land having a deep groundwater, instead of on land with a shallow water table will lower overall SRP contributions.
- Feedstock Contract Considerations for a Piedmont BiorefineryCundiff, John S.; Grisso, Robert D.; Fike, John H. (MDPI, 2020-12-14)A biorefinery purchasing feedstock (perennial grass) must offer contracts that provide the same opportunity to earn a profit for a feedstock contractor located 50 or 5 km from the biorefinery. The business plan presented here specifies that the biomass is purchased in satellite storage locations (SSLs), and the load-out and hauling costs are paid by the biorefinery. Contracts can be offered for harvest in September, October, and November, a three-month harvest window, or the harvest window can be extended to December, January, and February, a six-month harvest window. Required total storage capacity is 75% of annual consumption for the three-month window and 50% for the six-month window, a significant difference in total storage capacity (cost). The storage cost difference paid by the biorefinery is 5.27 and 3.52 USD/Mg for the three-month and six-month, respectively. Several issues must be addressed in the feedstock contracts: (1) earlier harvest, before plant senescence, means less nutrients are translocated back into the soil and more are removed at harvest; (2) harvest losses are higher for all harvests after the September harvest; and (3) storage losses increase with storage time in the SSL. Time of removal from the SSL is dictated by the biorefinery; thus, the feedstock contractor must be compensated. The contracts paid by the biorefinery, averaged across the entire annual consumption, were about the same for the three-month window, and six-month window. This result was obtained because fertilizer cost decreases and harvest losses increase as the harvest date increases; thus, the two factors tend to offset. Using a 77 USD/Mg base cost, representative feedstock payment at the SSL (no storage losses included) for contractors with various month contracts are September (84.30), October (85.54), November (86.72), December 88.63), January (89.98), and February (90.58). Subsequent compensation for storage losses depends on the amount of time the particular unit of biomass is in storage before shipment.
- Finding What Is Inaccessible: Antimicrobial Resistance Language Use among the One Health DomainsWind, Lauren L.; Briganti, Jonathan; Brown, Anne M.; Neher, Timothy P.; Davis, Meghan F.; Durso, Lisa M.; Spicer, Tanner; Lansing, Stephanie (MDPI, 2021-04-03)The success of a One Health approach to combating antimicrobial resistance (AMR) requires effective data sharing across the three One Health domains (human, animal, and environment). To investigate if there are differences in language use across the One Health domains, we examined the peer-reviewed literature using a combination of text data mining and natural language processing techniques on 20,000 open-access articles related to AMR and One Health. Evaluating AMR key term frequency from the European PubMed Collection published between 1990 and 2019 showed distinct AMR language usage within each domain and incongruent language usage across domains, with significant differences in key term usage frequencies when articles were grouped by the One Health sub-specialties (2-way ANOVA; p < 0.001). Over the 29-year period, “antibiotic resistance” and “AR” were used 18 times more than “antimicrobial resistance” and “AMR”. The discord of language use across One Health potentially weakens the effectiveness of interdisciplinary research by creating accessibility issues for researchers using search engines. This research was the first to quantify this disparate language use within One Health, which inhibits collaboration and crosstalk between domains. We suggest the following for authors publishing AMR-related research within the One Health context: (1) increase title/abstract searchability by including both antimicrobial and antibiotic resistance related search terms; (2) include “One Health” in the title/abstract; and (3) prioritize open-access publication.
- A Human Serum-Based Enzyme-Free Continuous Glucose Monitoring Technique Using a Needle-Type Bio-Layer Interference SensorSeo, Dongmin; Paek, Sung-Ho; Oh, Sangwoo; Seo, Sungkyu; Paek, Se-Hwan (MDPI, 2016-09-24)The incidence of diabetes is continually increasing, and by 2030, it is expected to have increased by 69% and 20% in underdeveloped and developed countries, respectively. Therefore, glucose sensors are likely to remain in high demand in medical device markets. For the current study, we developed a needle-type bio-layer interference (BLI) sensor that can continuously monitor glucose levels. Using dialysis procedures, we were able to obtain hypoglycemic samples from commercial human serum. These dialysis-derived samples, alongside samples of normal human serum were used to evaluate the utility of the sensor for the detection of the clinical interest range of glucose concentrations (70–200 mg/dL), revealing high system performance for a wide glycemic state range (45–500 mg/dL). Reversibility and reproducibility were also tested over a range of time spans. Combined with existing BLI system technology, this sensor holds great promise for use as a wearable online continuous glucose monitoring system for patients in a hospital setting.
- Human-Induced Alterations to Land Use and Climate and Their Responses for Hydrology and Water Management in the Mekong River BasinSridhar, Venkataramana; Kang, Hyunwoo; Ali, Syed Azhar (MDPI, 2019-06-25)The Mekong River Basin (MRB) is one of the significant river basins in the world. For political and economic reasons, it has remained mostly in its natural condition. However, with population increases and rapid industrial growth in the Mekong region, the river has recently become a hotbed of hydropower development projects. This study evaluated these changing hydrological conditions, primarily driven by climate as well as land use and land cover change between 1992 and 2015 and into the future. A 3% increase in croplands and a 1–2% decrease in grasslands, shrublands, and forests was evident in the basin. Similarly, an increase in temperature of 1–6 °C and in precipitation of 15% was projected for 2015–2099. These natural and climate-induced changes were incorporated into two hydrological models to evaluate impacts on water budget components, particularly streamflow. Wet season flows increased by up to 10%; no significant change in dry season flows under natural conditions was evident. Anomaly in streamflows due to climate change was present in the Chiang Saen and Luang Prabang, and the remaining flow stations showed up to a 5% increase. A coefficient of variation <1 suggested no major difference in flows between the pre- and post-development of hydropower projects. The results suggested an increasing trend in streamflow without the effect of dams, while the inclusion of a few major dams resulted in decreased river streamflow of 6% to 15% possibly due to irrigation diversions and climate change. However, these estimates fall within the range of uncertainties in natural climate variability and hydrological parameter estimations. This study offers insights into the relationship between biophysical and anthropogenic factors and highlights that management of the Mekong River is critical to optimally manage increased wet season flows and decreased dry season flows and handle irrigation diversions to meet the demand for food and energy production.
- Improved Drought Prediction Using Near Real-Time Climate Forecasts and Simulated Hydrologic ConditionsKang, Hyunwoo; Sridhar, Venkataramana (MDPI, 2018-05-30)Short-term drought forecasting is helpful for establishing drought mitigation plans and for managing risks that often ensue in water resource systems. Additionally, hydrologic modeling using high-resolution spatial and temporal data is used to simulate the land surface water and energy fluxes, including runoff, baseflow, and soil moisture, which are useful for drought forecasting. In this study, the Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models are used for short-term drought forecasting in the contiguous United States (CONUS), as many areas in this region are frequently affected by varying drought intensities. Weekly-to-seasonal meteorological inputs are provided by the Climate Prediction Center (CPC) for the retrospective period (January 2012 to July 2017) and Climate Forecasting System version 2 (CFS v2) for the forecasting period (August 2017 to April 2018), and these inputs are used to estimate agricultural and groundwater drought conditions. For drought assessment, three drought indices, namely, the Standardized Soil Moisture index (SSI), the Multivariate Standardized Drought Index (MSDI), and the Standardized Baseflow index (SBI), were analyzed. The accuracy of the forecasting results was verified using several a performance measure (Drought area agreement (%); DA). Generally, eight weeks of lead time forecasting showed good drought predictability from both the SWAT and VIC models for the MSDI simulations (62% for SWAT and 64% for VIC for all drought categories). However, the DA values for eight weeks lead time forecasting for SSI were 23% (SWAT) and 10% (VIC) and 7% (SWAT) and 7% (VIC) for the SBI, respectively. In addition, the accuracies of drought predictions remarkably decreased after eight weeks, and the average DA values were 36% for SWAT and 38% for VIC due to an increase in the uncertainties associated with meteorological variables in CFS v2 products. For example, there are increases in the total number of grids where the absolute values of monthly differences between CFSv2 and CPC observations exceed 20 mm and 1 °C during the forecasting period. Additionally, drought forecasting using only one variable (i.e., SSI and SBI) showed low prediction performances even for the first eight weeks. The results of this study provide insights into drought forecasting methods and provide a better understanding to plan for timely water resource management decisions.
- In-Field Performance of Biomass BalersGrisso, Robert D.; Webb, Erin G.; Cundiff, John S. (MDPI, 2020-12-04)Herbaceous biomass will contribute significantly to meeting renewable energy goals. Harvesting equipment for hay is generally suitable for mowing, raking, and baling grasses such as switchgrass; however, there is a need for field data to better understand machine performance in energy crops. The purpose of this study was to collect field data to estimate baler field capacity, throughput, and speed. Data gathered with a Differential Global Positioning System (DGPS) unit during baling provided time-motion studies of baler productivity. Six fields were used to compare field capacity, speed, and throughput results from four round balers and one large-square baler. The results show that in-field performance of round balers is significantly affected by yield, but that the relationship can be represented with machinery management concepts, knowledge of maximum throughput, and wrap-eject time. Baler performance will be overestimated if the yield, maximum throughput, and wrap-eject time are not correctly accounted for.
- Integrating Climate Forecasts with the Soil and Water Assessment Tool (SWAT) for High-Resolution Hydrologic Simulations and Forecasts in the Southeastern U.S.Sehgal, Vinit; Sridhar, Venkataramana; Juran, Luke; Ogejo, Jactone Arogo (MDPI, 2018-08-29)This study provides high-resolution modeling of daily water budget components at Hydrologic Unit Code (HUC)-12 resolution for 50 watersheds of the South Atlantic Gulf (SAG) region in the southeastern U.S. (SEUS) by implementing the Soil and Water Assessment Tool (SWAT) model in the form of a near real-time, semi-automated framework. A near real-time hydrologic simulation framework is implemented with a lead time of nine months (March–December 2017) by integrating the calibrated SWAT model with National Centers for Environmental Prediction coupled forecast system model version 2 (CFSv2) weather data to forecast daily water balance components. The modeling exercise is conducted as a precursor for various future hydrologic studies (retrospective or forecasting) for the region by providing a calibrated hydrological dataset at high spatial (HUC-12) and temporal (1-day) resolution. The models are calibrated (January 2003–December 2010) and validated (January 2011–December 2013) for each watershed using the observed streamflow data from 50 United States Geological Survey (USGS) gauging stations. The water balance analysis for the region shows that the implemented models satisfactorily represent the hydrology of the region across different sub-regions (Appalachian highlands, plains, and coastal wetlands) and seasons. While CFSv2-driven SWAT models are able to provide reasonable performance in near real-time and can be used for decision making in the region, caution is advised for using model outputs as the streamflow forecasts display significant deviation from observed streamflow for all watersheds for lead times greater than a month.
- «
- 1 (current)
- 2
- 3
- »