Center for Neutrino Physics
Permanent URI for this community
Browse
Browsing Center for Neutrino Physics by Title
Now showing 1 - 20 of 136
Results Per Page
Sort Options
- The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working GroupsCollaboration, TLBNE; Akiri, T.; Allspach, D.; Andrews, M.; Arisaka, K.; Arrieta-Diaz, E.; Artuso, M.; Bai, X.; Balantekin, A. B.; Baller, B.; Barletta, W. A.; Barr, G.; Bass, M.; Beck, A.; Becker, B.; Bellini, V.; Benhar, Omar; Berger, B. E.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, A.; Beroz, F.; Bhatnagar, V.; Bhuyan, B.; Bionta, R.; Bishai, M.; Blake, A.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Blusk, S.; Boehnlein, D.; Bolton, T.; Brack, J.; Bradford, R.; Breedon, R.; Bromberg, C.; Brown, R.; Buchanan, N.; Camilleri, Leslie; Campbell, M.; Carr, Rachel E.; Carminati, G.; Chen, A.; Chen, H.; Cherdack, D.; Chi, C.; Childress, S.; Choudhary, B.; Church, E.; Cline, D.; Coleman, S.; Corey, R.; D'Agostino, M. V.; Davies, G. S.; Dazeley, S.; Jong, J. D.; DeMaat, B.; Demuth, D.; Dighe, A.; Djurcic, Zelimir; Dolph, J.; Drake, G.; Drozhdin, A.; Duan, H.; Duyang, H.; Dye, S.; Dykhuis, T.; Edmunds, D.; Elliott, S.; Enomoto, S.; Escobar, C. O.; Felde, J.; Feyzi, F.; Fleming, B.; Fowler, J.; Fox, W.; Friedland, A.; Fujikawa, B. K.; Gallagher, H.; Garilli, G.; Garvey, G. T.; Gehman, V. M.; Geronimo, G. D.; Gill, R.; Goodman, M.; Goon, J.; Gorbunov, D.; Gran, R.; Guarino, V.; Guarnaccia, E.; Guenette, R.; Gupta, P.; Habig, A.; Hackenburg, R. W.; Hahn, A.; Hahn, R.; Haines, T.; Hans, S.; Harton, J.; Hays, S.; Hazen, E.; He, Q.; Heavey, A.; Heeger, K.; Hellauer, R.; Himmel, A.; Horton-Smith, Glenn A.; Howell, J.; Huber, Patrick; Hurh, P.; Huston, J.; Hylen, J.; Insler, J.; Jaffe, D.; James, C.; Johnson, C.; Johnson, M.; Johnson, R.; Johnson, W.; Johnston, W.; Johnstone, J.; Jones, B.; Jostlein, H.; Junk, T.; Junnarkar, S.; Kadel, R.; Kafka, T.; Kaminski, D.; Karagiorgi, Georgia S.; Karle, A.; Kaspar, J.; Katori, T.; Kayser, B.; Kearns, E.; Kettell, S. H.; Khanam, F.; Klein, J.; Kneller, J.; Koizumi, G.; Kopp, J.; Kopp, S.; Kropp, W.; Kudryavtsev, V. A.; Kumar, A.; Kumar, J.; Kutter, T.; Lackowski, T.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Lanza, R.; Latorre, T.; Learned, J.; Lee, D.; Lee, K.; Li, Y.; Linden, S.; Ling, J.; Link, Jonathan M.; Littenberg, L.; Loiacono, L.; Liu, T.; Losecco, J.; Louis, W.; Lucas, P.; Lunardini, C.; Lundberg, B.; Lundin, T.; Makowiecki, D.; Malys, S.; Mandal, S.; Mann, A.; Mantsch, P.; Marciano, W. J.; Mariani, Camillo; Maricic, Jelena; Marino, A.; Marshak, M.; Maruyama, R.; Matthews, J.; Matsuno, S.; Mauger, C.; McCluskey, E.; McDonald, K.; McFarland, K. S.; McKeown, R.; McTaggart, R.; Mehdiyev, R.; Melnitchouk, W.; Meng, Y.; Mercurio, B.; Messier, M.; Metcalf, W.; Milincic, R.; Miller, W.; Mills, G.; Mishra, S.; MoedSher, S.; Mohapatra, D.; Mokhov, N.; Moore, C.; Morfin, J.; Morse, W.; Moss, A.; Mufson, S.; Musser, J.; Naples, D.; Napolitano, J.; Newcomer, M.; Norris, B.; Ouedraogo, S.; Page, B.; Pakvasa, S.; Paley, J.; Paolone, V.; Papadimitriou, V.; Parsa, Z.; Partyka, K.; Pavlovic, Z.; Pearson, C.; Perasso, S.; Petti, R.; Plunkett, R.; Polly, C. C.; Pordes, S.; Potenza, R.; Prakash, A.; Prokofiev, O.; Qian, X.; Raaf, J.; Radeka, V.; Raghavan, R.; Rameika, R.; Rebel, B.; Rescia, S.; Reitzner, D.; Richardson, M.; Riesselmann, K.; Robinson, M.; Rosen, M.; Rosenfeld, C.; Rucinski, R.; Russo, T.; Sahijpal, S.; Salon, S.; Samios, N.; Sanchez, Maria Cristina; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Seibert, S.; Sergiampietri, F.; Shaevitz, Marjorie Hansen; Shanahan, P.; Shaposhnikov, M.; Sharma, R.; Simos, N.; Singh, V.; Sinnis, G.; Sippach, W.; Skwarnicki, T.; Smy, M.; Sobel, H.; Soderberg, M.; Sondericker, J.; Sondheim, W.; Spitz, Joshua; Spooner, N.; Stancari, M.; Stancu, Ion; Stewart, J.; Stoler, P.; Stone, J.; Stone, S.; Strait, J.; Straszheim, T.; Striganov, S.; Sullivan, G.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Talaga, R.; Tanaka, H.; Tayloe, R.; Taylor, D.; Thomas, J.; Thompson, L.; Thomson, M.; Thorn, C.; Tian, X.; Toki, W.; Tolich, N.; Tripathi, M.; Trovato, M.; Tseung, H.; Tzanov, M.; Urheim, J.; Usman, S.; Vagins, M. R.; Berg, R. V.; Water, R. V. D.; Varner, G.; Vaziri, K.; Velev, G.; Viren, B.; Wachala, T.; Walter, C.; Wang, H.; Wang, Z.; Warner, D.; Webber, D.; Weber, A.; Wendell, R.; Wendt, C.; Wetstein, M.; White, H.; White, S.; Whitehead, L.; Willis, W.; Wilson, R. J.; Winslow, L.; Ye, J.; Yeh, M.; Yu, B.; Zeller, Geralyn P.; Zhang, C.; Zimmerman, E.; Zwaska, R. (2011-10-27)In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011.
- The 750 GeV diphoton excess in unified SU(2)(L) x SU(2)(R) x SU(4) models from noncommutative geometryAydemir, U.; Minic, Djordje; Sun, C.; Takeuchi, Tatsu (World Scientific, 2016-06-14)
- Active-to-sterile neutrino dipole portal and the XENON1T excessShoemaker, Ian M.; Tsai, Yu-Dai; Wyenberg, Jason (American Physical Society, 2021-12-27)In this paper, we find that a magnetic transition dipole moment between tau and sterile neutrinos can account for the XENON1T excess events. Unlike the ordinary neutrino dipole moment, the introduction of the new sterile mass scale allows for astrophysical bounds to be suppressed. Interestingly, the best-fit regions that are compatible with the SN1987A imply either boron-8 as the source flux. We find that sterile neutrinos in the similar to(500-800) keV mass range are capable of evading astrophysical constraints while being able to successfully explain the XENON1T event rate. We also set new constraints on the dipole portal based on the Xenon 1T data. The sterile neutrino in the best fit parameter space may have significant effects on big bang nucleosynthesis (BBN). We show the region in which a low reheating temperature of the Universe may allow the BBN constraints to be alleviated.
- An analysis of nonoblique corrections to the Zb¯b vertexTakeuchi, Tatsu; Grant, Aaron K.; Rosner, Jonathan L. (1994)We present a model–independent analysis of the Zb¯b vertex, with the aim of constraining contributions of new physics to the left- and right–handed couplings of the b. We find that the left–handed coupling of the b is quite narrowly constrained by present data, but that the right–handed coupling is still largely unconstrained.
- Analytical approximation of the neutrino oscillation matter effects at large theta (13)Agarwalla, S. K.; Kao, Y.; Takeuchi, Tatsu (Springer, 2014-04-07)
- The Andromeda gamma-ray excess: background systematics of the millisecond pulsars and dark matter interpretationsZimmer, Fabian; Macias, Oscar; Ando, Shin'ichiro; Crocker, Roland M.; Horiuchi, Shunsaku (Oxford University Press, 2022-09)Since the discovery of an excess in gamma rays in the direction of M31, its cause has been unclear. Published interpretations focus on dark matter or stellar related origins. Studies of a similar excess in the Milky Way centre motivate a correlation of the spatial morphology of the signal with the distribution of stellar mass in M31. However, a robust determination of the best theory for the observed excess emission is challenging due to uncertainties in the astrophysical gamma-ray foreground model. We perform a spectro-morphological analysis of the M31 gamma-ray excess using state-of-the-art templates for the distribution of stellar mass in M31 and novel astrophysical foreground models for its sky region. We construct maps for the old stellar populations of M31 based on data from the PAndAS survey and carefully remove the foreground stars. We also produce improved astrophysical foreground models via novel image inpainting techniques based on machine learning methods. Our stellar maps, mimicking the location of a population of millisecond pulsars in the bulge of M31, reach a 5.4 sigma significance, making them as strongly favoured as the simple phenomenological models usually considered in the literature, e.g. disc-like templates. This detection is robust to generous variations of the astrophysical foreground model. Once the stellar templates are included in the astrophysical model, we show that the dark matter annihilation interpretation of the signal is unwarranted. We demonstrate that about one million unresolved millisecond pulsars naturally explain the observed gamma-ray luminosity per stellar mass, energy spectrum, and stellar bulge-to-disc flux ratio.
- Applied Antineutrino Physics 2015 -- Conference SummaryBowden, N. S.; Heeger, K. M.; Huber, Patrick; Mariani, Camillo; Vogelaar, R. Bruce (2016-02)This is a brief summary of the 11th Applied Antineutrino Physics 2015 workshop held at the Virginia Tech Arlington Research Facility from December 7-8, 2015.
- Axionlike Particles at Future Neutrino Experiments: Closing the Cosmological TriangleBrdar, Vedran; Dutta, Bhaskar; Jang, Wooyoung; Kim, Doojin; Shoemaker, Ian M.; Tabrizi, Zahra; Thompson, Adrian; Yu, Jaehoon (2021-05-17)Axionlike particles (ALPs) provide a promising direction in the search for new physics, while a wide range of models incorporate ALPs. We point out that future neutrino experiments, such as DUNE, possess competitive sensitivity to ALP signals. The high-intensity proton beam impinging on a target can not only produce copious amounts of neutrinos, but also cascade photons that are created from charged particle showers stopping in the target. Therefore, ALPs interacting with photons can be produced (often energetically) with high intensity via the Primakoff effect and then leave their signatures at the near detector through the inverse Primakoff scattering or decays to a photon pair. Moreover, the high-capability near detectors allow for discrimination between ALP signals and potential backgrounds, improving the signal sensitivity further. We demonstrate that a DUNE-like detector can explore a wide range of parameter space in ALP-photon coupling g(a gamma) vs ALP mass m(a), including some regions unconstrained by existing bounds; the "cosmological triangle" will be fully explored and the sensitivity limits would reach up to m(a) similar to 3-4 GeV and down to g(a gamma) similar to 10(-8) GeV-1.
- B-decay anomalies and scalar leptoquarks in unified Pati-Salam models from noncommutative geometryAydemir, Ufuk; Minic, Djordje; Sun, Chen; Takeuchi, Tatsu (Springer, 2018-09-19)Motivated by possible scalar-leptoquark explanations of the recently reported B-decay anomalies, we investigate whether the required leptoquarks can be accommodated within models based on noncommutative geometry (NCG). The models considered have the gauge structure of Pati-Salam models, SU(4) x SU(2)(L) x SU(2)(R), with gauge coupling unification at a single scale. In one of the models, we find a unique scalar leptoquark with quantum numbers (3, 1, -1/3)(321), originating from a complex multiplet (6, 1, 1)(422), which can potentially explain the B-decay anomalies if its mass is on the order of a few TeV. The unification of couplings can be realized with the inclusion of a single step of intermediate symmetry breaking. The scalar leptoquark under consideration does not contribute to proton decay due to the absence of diquark couplings, as dictated by the underlying noncommutative geometry.
- Bounds on cosmic ray-boosted dark matter in simplified models and its corresponding neutrino-floorDent, James B.; Dutta, Bhaskar; Newstead, Jayden L.; Shoemaker, Ian M. (2020-06-15)We study direct detection bounds on cosmic ray-upscattered dark matter in simplified models including light mediators. We find that the energy dependence in the scattering cross section is significant, and produces stronger bounds than previously found (which assumed constant cross sections) by many orders of magnitude at low dark matter mass. Finally, we compute the "neutrino-floor" that will limit future direct detection searches for cosmic ray-upscattered dark matter. While we focus on vector interactions for illustration, we emphasize that the energy dependence is critical in determining accurate bounds on any particle physics model of dark matter-cosmic ray interactions from experimental data on this scenario.
- Cerium Ruthenium Low-Energy Antineutrino Measurements for Safeguarding Military Naval ReactorsCogswell, Bernadette K.; Huber, Patrick (American Physical Society, 2022-06-14)The recent agreement to transfer nuclear submarine reactors and technology from two nuclear-weapon states to a non-nuclear-weapon state (AUKUS deal) highlights an unsolved problem in international safeguards: how to safeguard naval reactor fuel while it is on board an operational nuclear submarine. Proposals to extend existing safeguards technologies and practices are complicated by the need for civilian international inspectors to gain access to the interior of the submarine and the reactor compartment, which raises national security concerns. In this Letter we show that implementing safeguards on submarine propulsion reactors using a low-energy antineutrino reactor-off method, between submarine patrols, can by-pass the need for onboard access all together. We find that, using inverse beta decay, detectors can achieve a timely and high level of assurance that a submarine???s nuclear core has not been diverted (detector mass of around 100 kg) nor its enrichment level changed (detector mass of around 10 tons).
- The CHANDLER Antineutrino Detection System and Nuclear Reactor MonitoringLink, Jonathan M. (2023-10-20)
- CHANDLER: A New Technology for Surface-level Reactor Neutrino DetectionLink, Jonathan M. (2016-12-16)Motivation ‒ Why do we need better reactor neutrino detectors? Technological Foundations ‒ Where do these ideas come from? The CHANDLER Technology ‒ The basics idea Detector R&D ‒ What we have learned so far CHANDLER and SoLid ‒ A sterile neutrino search
- CHANDLER: A Technology for Surface-level Reactor Neutrino DetectionLink, Jonathan M. (2023-01-17)
- Characterization of the spontaneous light emission of the PMTs used in the Double Chooz experimentAbe, Y.; Abrahao, T.; Almazan, H.; Alt, C.; Appel, S.; Baussan, E.; Bekman, I.; Bergevin, M.; Bezerra, T. J. C.; Bezrukhov, Leonid B.; Blucher, E.; Brugiere, T.; Buck, C.; Busenitz, J.; Cabrera, A.; Calvo, E.; Camilleri, Leslie; Carr, Rachel E.; Cerrada, M.; Chauveau, E.; Chimenti, P.; Collin, A. P.; Conover, E.; Conrad, Janet M.; Crespo-Anadon, J. I.; Crum, K.; Cucoanes, A. S.; Damon, E.; Dawson, J. V.; de Kerret, H.; Dhooghe, J.; Dietrich, D.; Djurcic, Zelimir; dos Anjos, J. C.; Dracos, M.; Etenko, A.; Fallot, M.; Felde, J.; Fernandes, S. M.; Fischer, V.; Franco, D.; Franke, M.; Furuta, H.; Gil-Botella, I.; Giot, L.; Goger-Neff, M.; Gomez, H.; Gonzalez, L. F. G.; Goodenough, L.; Goodman, M. C.; Haag, N.; Hara, T.; Haser, J.; Hellwig, D.; Hofmann, M.; Horton-Smith, Glenn A.; Hourlier, A.; Ishitsuka, M.; Jiménez, S.; Jochum, J.; Jollet, C.; Kaether, F.; Kalousis, L. N.; Kamyshkov, Y.; Kaneda, M.; Kaplan, D. M.; Kawasaki, T.; Kemp, E.; Kryn, D.; Kuze, M.; Lachenmaier, Tobias; Lane, C. E.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Lima, H. P.; Lindner, M.; Lopez-Castano, J. M.; LoSecco, J. M.; Lubsandorzhiev, B. K.; Lucht, S.; Maeda, J.; Mariani, Camillo; Maricic, Jelena; Martino, J.; Matsubara, T.; Mention, G.; Meregaglia, A.; Miletic, T.; Milincic, R.; Minotti, A.; Nagasaka, Y.; Navas-Nicolás, D.; Novella, P.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Onillon, A.; Osborn, A.; Palomares, C.; Pepe, I. M.; Perasso, S.; Porta, A.; Pronost, G.; Reichenbacher, J.; Reinhold, B.; Roehling, M.; Roncin, R.; Rybolt, B.; Sakamoto, Y.; Santorelli, R.; Schilithz, A. C.; Schoenert, S.; Schoppmann, S.; Shaevitz, Marjorie Hansen; Sharankova, R.; Shrestha, D.; Sibille, V.; Sinev, V.; Skorokhvatov, Mikhail D.; Smith, E.; Soiron, M.; Spitz, Joshua; Stahl, A.; Stancu, Ion; Stokes, Lee F. F.; Strait, M.; Suekane, F.; Sukhotin, S.; Sumiyoshi, T.; Sun, Y.; Svoboda, R.; Terao, K.; Tonazzo, A.; Thi, H. H. T.; Valdiviesso, G. A.; Vassilopoulos, N.; Verdugo, A.; Veyssiere, C.; Vivier, M.; von Feilitzsch, F.; Wagner, S.; Walsh, N.; Watanabe, H.; Wiebusch, C.; Wurm, M.; Yang, G.; Yermia, F.; Zimmer, V. (IOP, 2016-08-01)
- Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sectorColoma, Pilar; Huber, Patrick; Link, Jonathan M. (Springer, 2014-11-10)In this letter we point out the possibility to study new physics in the neutrino sector using dark matter detectors based on liquid xenon. These are characterized by very good spatial resolution and extremely low thresholds for electron recoil energies. When combined with a radioactive nu e source, both features in combination allow for a very competitive sensitivity to neutrino magnetic moments and sterile neutrino oscillations. We find that, for realistic values of detector size and source strength, the bound on the neutrino magnetic moment can be improved by an order of magnitude with respect to the present value. Regarding sterile neutrino searches, we find that most of the gallium anomaly could be explored at the 95% confidence level just using shape information.
- Comparison of nu(mu)-Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions: MicroBooNE CollaborationAdams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bhat, A.; Bhattacharya, K.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, Leslie; Caratelli, D.; Castillo Fernandez, R.; Cavanna, F.; Cerati, G.; Chen, H.; Chen, Y.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, Janet M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadon, J. I.; Del Tutto, M.; Devitt, D.; Diaz, A.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Evans, J. J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Golapinni, S.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Guzowski, P.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, Glenn A.; Hourlier, A.; Huang, E-C; James, C.; Jan de Vries, J.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Jwa, Y-J; Kaleko, D.; Karagiorgi, Georgia S.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Marcocci, S.; Mariani, Camillo; Marshall, J.; Martinez Caicedo, D. A.; Mastbaum, A.; Meddage, V.; Mettler, T.; Miceli, T.; Mills, G. B.; Mogan, A.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murphy, M.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Pandey, V.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Ross-Lonergan, M.; von Rohr, C. Rudolph; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, Marjorie Hansen; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, Joshua; St John, J.; Strauss, T.; Sutton, K.; Sword-Fehlberg, S.; Szelc, A. M.; Tagg, N.; Tang, W.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wei, H.; Wickremasinghe, D. A.; Wierman, K.; Williams, Z.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yarbrough, G.; Yates, L. E.; Zeller, Geralyn P.; Zennamo, J.; Zhang, C. (2019-03-18)We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of MeV, using an exposure corresponding to 5.0x1019 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity.
- Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experimentsAnkowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, C. M.; Mariani, Camillo; Meloni, David; Vagnoni, E. (American Physical Society, 2015-10-22)To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ &8594; νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an Ο(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. On the other hand, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.
- Constraining new physics with vertex correctionsTakeuchi, Tatsu; Lebedev, O.; Loinaz, William (1999)
- Constraining non-standard interactions of the neutrino with BorexinoAgarwalla, S. K.; Lombardi, Francesco; Takeuchi, Tatsu (Springer, 2012-12-01)We use the Borexino 153.6 ton·year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainties in the 7Be solar neutrino flux and the mixing angle θ 23, and backgrounds due to 85Kr and 210Bi β-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the 85Kr background.