Willans Line Based Equivalent Consumption Minimization Strategy for Charge Sustaining Hybrid Electric Vehicle

TR Number
Date
2020-09-21
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Energy management strategies for charge sustaining hybrid electric vehicles reduce fuel power consumption from the engine and electric power consumption from the motor while meeting output power demand. The equivalent consumption minimization strategy is a real time control strategy which uses backward facing models and an equivalence ratio to calculate the lowest total fuel power consumption. The equivalence ratio quantifies the fuel power to battery power conversion process of the hybrid electric vehicle components and therefore quantifies electric power consumption in terms of fuel power consumption. The magnitude of the equivalence ratio determines when the hybrid electric vehicle commands a conventional, electric, or hybrid mode of operation. The equivalence ratio therefore influences the capability of the control strategy to meet charge sustaining performance. Willans line models quantify the input power to output power relationship for powertrain and drivetrain components with a linear relationship and a constant offset. The hybrid electric vehicle model performance is characterized using three Willans line models in the equivalent consumption minimization strategy. The slope of the Willans line models, or marginal efficiency, is used to generate a single equivalence ratio which quantifies the fuel to battery energy conversion process for the hybrid electric vehicle. The implementation of a Willans line based equivalent consumption minimization strategy reduces total fuel power consumption while achieving charge sustaining performance over mild and aggressive drive cycles.

Description
Keywords
Willans Line, Equivalent Consumption Minimization Strategy, Charge Sustaining, Fuel Economy
Citation
Collections