Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Algorithms for Data Analytics in Geophysical Imaging

    Thumbnail
    View/Open
    Kump_JL_T_2021.pdf (2.206Mb)
    Downloads: 155
    Supporting documents (29.99Kb)
    Downloads: 15
    Date
    2021-06-14
    Author
    Kump, Joseph Lee
    Metadata
    Show full item record
    Abstract
    Modern sensing systems such as distributed acoustic sensing (DAS) can produce massive quantities of geophysical data, often in remote locations. This presents significant challenges with regards to data storage and performing efficient analysis. To address this, we have designed and implemented efficient algorithms for two commonly utilized techniques in geophysical imaging: cross-correlations, and multichannel analysis of surface waves (MASW). Our cross-correlation algorithms operate directly in the wavelet domain on compressed data without requiring a reconstruction of the original signal, reducing memory costs and improving scalabiliy. Meanwhile, our MASW implementations make use of MPI parallelism and GPUs, and present a novel problem for the GPU.
    General Audience Abstract
    Modern sensor designs make it easier to collect large quantities of seismic vibration data. While this data can provide valuable insight, it is difficult to effectively store and perform analysis on such a high data volume. We propose a few new, general-purpose algorithms that enable speedy use of two common methods in geophysical modeling and data analytics: crosscorrelation, which provides a measure of similarity between signals; and multichannel analysis of surface waves, which is a seismic imaging technique. Our algorithms take advantage of hardware and software typically available on modern computers, and the mathematical properties of these two methods.
    URI
    http://hdl.handle.net/10919/103864
    Collections
    • Masters Theses [21534]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us