Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Power Efficient Wireless Sensor Node through Edge Intelligence

    Thumbnail
    View/Open
    Damle_AP_T_2022.pdf (1.070Mb)
    Downloads: 23
    Date
    2022-08-04
    Author
    Damle, Abhishek Priyadarshan
    Metadata
    Show full item record
    Abstract
    Edge intelligence can reduce power dissipation to enable power-hungry long-range wireless applications. This work applies edge intelligence to quantify the reduction in power dissipation. We designed a wireless sensor node with a LoRa radio and implemented a decision tree classifier, in situ, to classify behaviors of cattle. We estimate that employing edge intelligence on our wireless sensor node reduces its average power dissipation by up to a factor of 50, from 20.10 mW to 0.41 mW. We also observe that edge intelligence increases the link budget without significantly affecting average power dissipation.
    General Audience Abstract
    Battery powered sensor nodes have access to a limited amount of energy. However, many applications of sensor nodes such as animal monitoring require energy intensive, long range data transmissions. In this work, we used machine learning to process motion data within our sensor node to classify cattle behaviors. We estimate that transmitting processed data dissipates up to 50 times less power when compared to transmitting raw data. Due to the properties of our transmission protocol, we also observe that transmitting processed data increases the range of transmissions without impacting power dissipation.
    URI
    http://hdl.handle.net/10919/111469
    Collections
    • Masters Theses [21205]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us