• Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Applications of Queuing Theory for Open-Pit Truck/Shovel Haulage Systems

    Thumbnail
    View/Open
    May_MA_T_2013.pdf (2.155Mb)
    Downloads: 35922
    Date
    2013-01-29
    Author
    May, Meredith Augusta
    Metadata
    Show full item record
    Abstract
    Surface mining is the most common mining method worldwide, and open pit mining accounts for more than 60% of all surface output. Haulage costs account for as much as 60% of the total operating cost for these types of mines, so it is desirable to maintain an efficient haulage system. As the size of the haulage fleet being used increases, shovel productivity increases and truck productivity decreases, so an effective fleet size must be chosen that will effectively utilize all pieces of equipment. One method of fleet selection involves the application of queuing theory to the haul cycle. Queuing theory was developed to model systems that provide service for randomly arising demands and predict the behavior of such systems. A queuing system is one in which customers arrive for service, wait for service if it is not immediately available, and move on to the next server or exit the system once they have been serviced. Most mining haul routes consist of four main components: loading, loaded hauling, dumping, and unloaded hauling to return to the loader. These components can be modeled together as servers in one cyclic queuing network, or independently as individual service channels. Data from a large open pit gold mine are analyzed and applied to a multichannel queuing model representative of the loading process of the haul cycle.  The outputs of the model are compared against the actual truck data to evaluate the validity of the queuing model developed.
    URI
    http://hdl.handle.net/10919/19218
    Collections
    • Masters Theses [17889]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us