Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Prediction of Large Spatio-Temporal Datasets

    Thumbnail
    View/Open
    Chen_Y_T_2013.pdf (534.3Kb)
    Downloads: 1607
    Date
    2013-05-24
    Author
    Chen, Yang
    Metadata
    Show full item record
    Abstract
    This thesis describes a robust and efficient design of Student-t based Robust Spatio-Temporal Prediction, namely, St-RSTP, to provide estimation based on observations over spatio-temporal neighbors. It is crucial to many applications in geographical information systems, medical imaging, urban planning, economy study, and climate forecasting. The proposed St-RSTP is more resilient to outliers or other small departures from model assumptions than its ancestor, the Spatio-Temporal Random Effects (STRE) model. STRE is a statistical model with linear order complexity for processing large scale spatiotemporal data. However, STRE has been shown sensitive to outliers or anomaly observations. In our design, the St-RSTP model assumes that the measurement error follows Student's t-distribution, instead of a traditional Gaussian distribution. To handle the analytical intractable inference of Student's t model, we propose an approximate inference algorithm in the framework of Expectation Propagation (EP). Extensive experimental evaluations, based on both simulation and real-life data sets, demonstrated the robustness and the efficiency of our Student-t prediction model compared with the STRE model.
    URI
    http://hdl.handle.net/10919/23098
    Collections
    • Masters Theses [21534]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us