Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic Terrain and Soil Modeling for Off-Road Mobility Studies

    Thumbnail
    View/Open
    RichardLee_thesis_final.pdf (9.358Mb)
    Downloads: 879
    Date
    2009-04-28
    Author
    Lee, Richard Chan
    Metadata
    Show full item record
    Abstract
    For realistic predictions of vehicle performance in off-road conditions, it is critical to incorporate in the simulation accurate representations of the variability of the terrain profile. It is not practically feasible to measure the terrain at a sufficiently large number of points, or, if measured, to use such data directly in the simulation. Dedicated modeling techniques and computational methods that realistically and efficiently simulate off-road operating conditions are thus necessary. Many studies have been recently conducted to identify effective and appropriate ways to reduce experimental data in order to preserve only essential information needed to re-create the main terrain characteristics, for future use. This thesis focuses on modeling terrain profiles using the finite difference approach for solving linear second-order stochastic partial differential equations. We currently use this approach to model non-stationary terrain profiles in two dimensions (i.e., surface maps). Certain assumptions are made for the values of the model coefficients to obtain the terrain profile through the fast computational approach described, while preserving the stochastic properties of the original terrain topology. The technique developed is illustrated to recreate the stochastic properties of a sample of terrain profile measured experimentally. To further analyze off-road conditions, stochastic soil properties are incorporated into the terrain topology. Soil models can be developed empirically by measuring soil data at several points, or they can be created by using mathematical relations such as the Bekker's pressure-sinkage equation for homogeneous soils. In this thesis, based on a previously developed stochastic soil model, the polynomial chaos method is incorporated in the soil model. In a virtual proving ground, the wheel and soil interaction has to be simulated in order to analyze vehicle maneuverability over different soil types. Simulations have been created on a surface map for different case studies: stepping with a rigid plate, rigid wheel and flexible wheel, and rolling of a rigid wheel and flexible wheel. These case studies had various combinations of stochastic or deterministic terrain profile, stochastic or deterministic soil model, and an object to run across the surface (e.g., deterministic terrain profile, stochastic soil model, rolling rigid wheel). This thesis develops a comprehensive terrain and soil simulation environment for off-road mobility studies. Moreover, the technique developed to simulate stochastic terrain profile can be employed to simulate other stochastic systems modeled by PDEs.
    URI
    http://hdl.handle.net/10919/32033
    Collections
    • Masters Theses [21534]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us