Airplane trajectory expansion for dynamics inversion

TR Number

Date

1992

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In aircraft research, there is keen interest in the procedure of determining the set of controls required to perform a maneuver from a definition of the trajectory. This is called the inverse problem. It has been proposed that if a complete set of states and state time derivatives can be derived from a trajectory then a model-following solution can allocate the controls necessary for the maneuver. This paper explores the problem of finding the complete state definition and provides a solution that requires numerical differentiation, fixed point iteration and a Newton's method solution to nonlinear equations. It considers trajectories that are smooth, piecewise smooth, and noise ridden. The resulting formulation was coded into a FORTRAN program. When tested against simple smooth maneuvers, the program output was very successful but demonstrated the limitations imposed by the assumptions and approximations in the development.

Description

Keywords

Citation

Collections