Show simple item record

dc.contributor.authorAngelini, Nicholas Alexanderen_US
dc.date.accessioned2014-04-08T08:01:05Z
dc.date.available2014-04-08T08:01:05Z
dc.date.issued2014-04-07en_US
dc.identifier.othervt_gsexam:2327en_US
dc.identifier.urihttp://hdl.handle.net/10919/46995
dc.description.abstractFormula SAE (FSAE) chassis systems are increasing being manufactured with integrated composite structures in an effort to increase the performance of the system while decreasing weight. The increased use of composite structures requires more details of the loading conditions and evaluation metrics than the mild steel structures they are replacing. The prototypical FSAE steel space frame chassis designs are heavily structured around the mandated safety rules that doubled as mostly satisfactory structures for vehicle loads. The use of composite structures and the directionality of their material properties has created a need for more detailed loading scenarios to evaluate their ability to transfer load. This thesis presents a framework for evaluating the chassis structure not only through the standard static twist analysis, but increased use of modal analysis and dynamic vehicle maneuvers using an attached suspension. The suspension joints and springs/dampers are modeled using Abaqus Connector Elements, allowing for the use of complex kinematic degrees of freedom definitions required to accurately model the suspension behavior. The elements used to represent the joints and springs are detailed as well as their superiority over traditional multi-point constraints in this context. The use of modal analysis is used for a more direct comparison of not only the efficiency of stiffness in the chassis alone, but also how the chassis interacts with the suspension. The natural frequencies from the modal analysis along with the static twist distribution along the chassis are presented as a replacement for the static torsional stiffness performance metric. By using dynamic vehicle maneuvers the chassis-suspension structure can be evaluated based on loads developed during the typical use of the FSAE vehicle. The dynamic nature of the analysis also allows for the inclusion of mass in the loading profile as well as the load variation with time that can be hard to achieve with static analysis. The framework for a bump event as well as a constant-speed-constant-radius turn are presented. The bump analysis is designed to evaluate the system's response to straight line dynamic events, while the turning maneuver evaluates the lateral components of the suspension load transfer capabilities. For the turn analysis both a spring/damper tire model using connector elements and a rolling tire model are presented. Intermediate checks on suspension and chassis behavior are evaluated to verify the modeling techniques; while the maneuver results are evaluated based on trends and overall motion rather than magnitudes due to lack of data at the time of the analysis.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.rightsThis Item is protected by copyright and/or related rights. Some uses of this Item may be deemed fair and permitted by law even without permission from the rights holder(s), or the rights holder(s) may have licensed the work for use under certain conditions. For other uses you need to obtain permission from the rights holder(s).en_US
dc.subjectFSAEen_US
dc.subjectFinite Elementsen_US
dc.subjectVehicle Maneuversen_US
dc.subjectCompositesen_US
dc.titleSimulating Dynamic Vehicle Maneuvers Using Finite Elements For Use In Design Of Integrated Composite Structureen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineMechanical Engineeringen_US
dc.contributor.committeechairWest, Robert L. Jr.en_US
dc.contributor.committeememberCase, Scott W.en_US
dc.contributor.committeememberHyer, Michael W.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record