Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of composting and soil type on dissipation of veterinary antibiotics in land-applied manures

    Thumbnail
    View/Open
    Accepted Version (514.3Kb)
    Downloads: 628
    Date
    Author
    Chen, C.
    Ray, P.
    Katharine, K.
    Pruden, Amy
    Xia, K.
    Metadata
    Show full item record
    Abstract
    The objective of this study was to determine the fate of commonly used veterinary antibiotics in their naturally excreted form when manure-based amendments are applied to soil. Beef cattle were administered sulfamethazine, tylosin, and chlortetracycline and dairy cows were treated with pirlimycin. The resulting manure was composted for 42 d under static or turned conditions and applied at agronomic N rates to sandy, silt, and silty clay loam soils and compared with amendment with corresponding raw manures in sacrificial microcosms over a 120-day period. Antibiotic dissipation in the raw manure-amended soils followed bi-phasic first order kinetics. The first phase half-lives for sulfamethazine, tylosin, chlortetracycline, and pirlimycin ranged from 6.0 to 18, 2.7 to 3.7, 23 to 25, and 5.5–8.2 d, respectively. During the second phase, dissipation of sulfamethazine was negligible, while the half-lives for tylosin, chlortetracycline, and pirlimycin ranged from 41 to 44, 75 to 144, and 87–142 d, respectively. By contrast, antibiotic dissipation in the compost-amended soils followed single-phase first order kinetics with negligible dissipation of sulfamethazine and half-lives of tylosin and chlortetracycline ranging from 15 to 16 and 49–104 d, respectively. Pirlimycin was below the detection limit in the compost-amended soils. After incubating 120 d, antibiotics in compost-amended soils (up to 3.1 μg kg−1) were significantly lower than in manure-amended soils (up to 19 μg kg−1, p < .0001), with no major effect of soil type on the dissipation. Risk assessment suggested that composting can reduce antibiotic resistance selection potential in manure-amended soils.
    URI
    http://hdl.handle.net/10919/81795
    Collections
    • All Faculty Deposits [2264]
    • Scholarly Works, Civil and Environmental Engineering [295]
    • Scholarly Works, Department of Dairy Science [43]
    • Scholarly Works, School of Plant and Environmental Sciences [776]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us