An Investigation into the Use of Density Functional Theory (DFT) Calculations for Predicting Vibrational Transitions for Perfluroinated Sulfonic Acid (PFSA) Ionomer Membranes

TR Number
Date
2019-02-05
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Perfluorinated sulfonic acid (PFSA) ionomer membranes demonstrate great potential for use in proton exchange membrane fuel cells (PEMFCs) due to their favorable electronic properties and excellent efficiency. However, the assignment of key vibrational transitions such as the symmetric sulfonate and ether stretches is not yet fully understood depriving researchers of a quick and simple technique for analyzing morphological changes. The symmetric sulfonate stretch could be used to track changes in the ionic clusters formed within the membrane while the ether stretch will provide insight into the largely semi-crystalline PTFE phase. Alterations in either regime will affect both ion transport and mechanical properties and produce a major shift in device performance.

This study focused on predicting the vibrational transitions for Aquivion, 3M PFSA, and Nafion using density functional theory (DFT) with the bulk being performed using the same functional and basis set combination, B3LPY/6-31+G*. For all three ionomers, the predicted vibrational transitions were affected by changes in both the conformer and solvation method with water being used as the solvent. Despite the noted changes, both vibrational transitions were determined to be within the range of 970-1100 cm-1 with the symmetric sulfonate stretch present at around 970-1010 cm-1 and the ether stretch observed at around 1050-1100 cm-1 with solvation present. While the calculated peak positions mirror those found in the experimental spectra within the literature, the traditional normal mode assignments do not match those predicted by our calculations. However, recent studies have hypothesized that these vibrational transitions are coupled, which could explain why they have been so difficult to assign.

Description
Keywords
DFT, PFSA, PTFE, Ionomers, Aquivion, 3M PFSA, Nafion, PEMFC, B3LYP, HF, M06, WB97XD, 6-31+G*, 6-311+G*, cc-pVDZ, AUG-cc-pVDZ, FTIR, Transmission, ATR
Citation
Collections