Maritime Mesh Network Simulation

Files
TR Number
Date
2018-08-21
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Maritime network plays an important role in civilian and academic applications. However, traditional maritime communication technologies cannot provide broadband services that can satisfy users' need. In this thesis, we proposed a buoy-based maritime mesh network and analyzed the maritime communication characteristics. Then we proposed a link-state-aware routing protocol to address link blockage problem when routing packets and built a simulator to evaluate the network performance. There are several parts of my work.

Firstly, we simulated ocean water field. Jerry Tessendorf proposed a method to create ocean surface based on Phillips spectrum which is a wind-driven, semi-empirical oceanography model. We implemented this algorithm in MATLAB and adjusted a key parameter in this algorithm.

Secondly, we proposed a link-state-aware routing protocol. Link stability is related to sea state and instant nodes elevation. In link-state-aware routing protocol, the transmitter will send predicted elevation information to receiver, and receiver will decide if the link is stable in next several seconds based on sea states and node elevation information.

Finally, we simulated this mesh network in network simulator 3 (NS3). This simulator will enable users to assess the network performance in various sea states. We also need to build a new mobility model, a new propagation model and implement a collision-free access method (spatial TDMA) model in simulation.

Description
Keywords
Ocean wave height field, routing protocol, Maritime communication
Citation
Collections