Maritime Mesh Network Simulation

dc.contributor.authorSun, Sihaoen
dc.contributor.committeechairYang, Yalingen
dc.contributor.committeememberSaad, Waliden
dc.contributor.committeememberMacKenzie, Allen B.en
dc.contributor.departmentElectrical Engineeringen
dc.date.accessioned2018-08-22T08:00:18Zen
dc.date.available2018-08-22T08:00:18Zen
dc.date.issued2018-08-21en
dc.description.abstractMaritime network plays an important role in civilian and academic applications. However, traditional maritime communication technologies cannot provide broadband services that can satisfy users' need. In this thesis, we proposed a buoy-based maritime mesh network and analyzed the maritime communication characteristics. Then we proposed a link-state-aware routing protocol to address link blockage problem when routing packets and built a simulator to evaluate the network performance. There are several parts of my work. Firstly, we simulated ocean water field. Jerry Tessendorf proposed a method to create ocean surface based on Phillips spectrum which is a wind-driven, semi-empirical oceanography model. We implemented this algorithm in MATLAB and adjusted a key parameter in this algorithm. Secondly, we proposed a link-state-aware routing protocol. Link stability is related to sea state and instant nodes elevation. In link-state-aware routing protocol, the transmitter will send predicted elevation information to receiver, and receiver will decide if the link is stable in next several seconds based on sea states and node elevation information. Finally, we simulated this mesh network in network simulator 3 (NS3). This simulator will enable users to assess the network performance in various sea states. We also need to build a new mobility model, a new propagation model and implement a collision-free access method (spatial TDMA) model in simulation.en
dc.description.abstractgeneralDue to burst growth of network coverage, seamless broadband connectivity has been realized in both our daily life and industrial operations. However, wireless communication coverage fades away when moving just several miles away from the coast. Current marine communication technologies cannot provide stable and broadband service, so we proposed a buoy-based maritime mesh network. In this thesis, we built a network simulator which integrates with several new models after analyzed the dynamic ocean wave motion and maritime communication link characteristics.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:16799en
dc.identifier.urihttp://hdl.handle.net/10919/84871en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectOcean wave height fielden
dc.subjectrouting protocolen
dc.subjectMaritime communicationen
dc.titleMaritime Mesh Network Simulationen
dc.typeThesisen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sun_S_T_2018.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Collections