Numerical approximation and identification problems for singular neutral equations
dc.contributor.author | Cerezo, Graciela M. | en |
dc.contributor.committeechair | Herdman, Terry L. | en |
dc.contributor.committeemember | Gunzburger, Max D. | en |
dc.contributor.committeemember | Burns, John A. | en |
dc.contributor.committeemember | Peterson, Janet S. | en |
dc.contributor.committeemember | Cliff, Eugene M. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T21:44:40Z | en |
dc.date.adate | 2009-09-05 | en |
dc.date.available | 2014-03-14T21:44:40Z | en |
dc.date.issued | 1994-04-25 | en |
dc.date.rdate | 2009-09-05 | en |
dc.date.sdate | 2009-09-05 | en |
dc.description.abstract | A collocation technique in non-polynomial spline space is presented to approximate solutions of singular neutral functional differential equations (SNFDEs). Using solution representations and general well-posedness results for SNFDEs convergence of the method is shown for a large class of initial data including the case of discontinuous initial function. Using this technique, an identification problem is solved for a particular SNFDE. The technique is also applied to other different examples. Even for the special case in which the initial data is a discontinuous function the identification problem is successfully solved. | en |
dc.description.degree | Master of Science | en |
dc.format.extent | vi, 43 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-09052009-040632 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-09052009-040632/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/44582 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V855_1994.C474.pdf | en |
dc.relation.isformatof | OCLC# 30847519 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V855 1994.C474 | en |
dc.subject.lcsh | Approximation theory | en |
dc.subject.lcsh | Collocation methods | en |
dc.subject.lcsh | Functional differential equations -- Numerical solutions | en |
dc.title | Numerical approximation and identification problems for singular neutral equations | en |
dc.type | Thesis | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V855_1994.C474.pdf
- Size:
- 1.41 MB
- Format:
- Adobe Portable Document Format
- Description: