Numerical approximation and identification problems for singular neutral equations

dc.contributor.authorCerezo, Graciela M.en
dc.contributor.committeechairHerdman, Terry L.en
dc.contributor.committeememberGunzburger, Max D.en
dc.contributor.committeememberBurns, John A.en
dc.contributor.committeememberPeterson, Janet S.en
dc.contributor.committeememberCliff, Eugene M.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T21:44:40Zen
dc.date.adate2009-09-05en
dc.date.available2014-03-14T21:44:40Zen
dc.date.issued1994-04-25en
dc.date.rdate2009-09-05en
dc.date.sdate2009-09-05en
dc.description.abstractA collocation technique in non-polynomial spline space is presented to approximate solutions of singular neutral functional differential equations (SNFDEs). Using solution representations and general well-posedness results for SNFDEs convergence of the method is shown for a large class of initial data including the case of discontinuous initial function. Using this technique, an identification problem is solved for a particular SNFDE. The technique is also applied to other different examples. Even for the special case in which the initial data is a discontinuous function the identification problem is successfully solved.en
dc.description.degreeMaster of Scienceen
dc.format.extentvi, 43 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-09052009-040632en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-09052009-040632/en
dc.identifier.urihttp://hdl.handle.net/10919/44582en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V855_1994.C474.pdfen
dc.relation.isformatofOCLC# 30847519en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V855 1994.C474en
dc.subject.lcshApproximation theoryen
dc.subject.lcshCollocation methodsen
dc.subject.lcshFunctional differential equations -- Numerical solutionsen
dc.titleNumerical approximation and identification problems for singular neutral equationsen
dc.typeThesisen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V855_1994.C474.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format
Description:

Collections