Circle Packing in Euclidean and Hyperbolic Geometries

dc.contributor.authorWilkerson, Mary Elizabethen
dc.contributor.committeechairFloyd, William J.en
dc.contributor.committeememberHaskell, Peter E.en
dc.contributor.committeememberThomson, James E.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:35:41Zen
dc.date.adate2008-05-30en
dc.date.available2014-03-14T20:35:41Zen
dc.date.issued2008-04-29en
dc.date.rdate2008-05-30en
dc.date.sdate2008-05-08en
dc.description.abstractGiven a graph that defines a triangulation of a simply connected surface, it is possible to associate a radius with each vertex so that the vertices represent centers of circles, and the edges denote patterns of tangency. Such a configuration of circles is called a circle packing. We shall give evidence for the existence and uniqueness of circle packings generated by such graphs, as well as an explanation of the algorithms used to find and output a circle packing on the complex plane and hyperbolic disc.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-05082008-175931en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05082008-175931/en
dc.identifier.urihttp://hdl.handle.net/10919/32390en
dc.publisherVirginia Techen
dc.relation.haspartdraft.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectCircle Packingsen
dc.subjectUniform Neighbor Modelen
dc.titleCircle Packing in Euclidean and Hyperbolic Geometriesen
dc.typeThesisen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
draft.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format

Collections