Tire Performance Estimation Under Combined Slip and Empirical Parametrization of the Tire Rut on Dry Sand

TR Number

Date

2024-03-15

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Applications like military, agriculture, and extra-planetary explorations require the successful navigation of vehicles across different types of terrain like soil, mud, and snow. As the properties of the terrain heavily influence the interaction with the tire, it is necessary to characterize the terrain from a tire performance and vehicle mobility perspective. Failure to properly understand the tire-terrain interaction can lead to undesirable conditions like loss of vehicle mobility due to excessive sinkage. As a result, it is essential to understand the tire terrain interaction between an off-road tire and a sandy terrain. This study was done to assess the performance of tires in both pure slip (only traction and braking) and combined slip conditions (steering and acceleration). A single-wheel indoor test rig was used to conduct tests under different conditions and a force transducer was used to capture the forces and moments generated in the tire hub. In addition to this, the tire footprint was captured with the help of a light-based 3-D scanner. Key parameters were defined in the 3D scan, and these parameters were correlated to the input test conditions. Additionally, a grid of force sensors was made, and measurements of the normal force acting at a depth below the undisturbed terrain were taken. Inferences were made about the linear speed of the wheel and the length of the pressure bulb under the tire.

Description

Keywords

Off-road performance, Combined Slip Conditions, Tire footprint, 3D Scanning, Non-cohesive soil, Soil Instrumentation.

Citation

Collections