VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Hypocenter Locations and Focal Mechanism Solutions of Earthquakes in the Epicentral Area of the 1886 Charleston, SC, Earthquake

dc.contributor.authorHardy, Anna Corellaen
dc.contributor.committeechairChapman, Martin C.en
dc.contributor.committeememberHole, John A.en
dc.contributor.committeememberZhou, Yingen
dc.contributor.departmentGeosciencesen
dc.date.accessioned2015-02-04T09:01:29Zen
dc.date.available2015-02-04T09:01:29Zen
dc.date.issued2015-02-03en
dc.description.abstractThe Charleston earthquake of 1886 was one of the largest shocks to occur on the eastern coast of North America. The geological cause has long been a controversial issue and a variety of source models have been proposed. Previous potential field modeling and reinterpretation of seismic reflection and well data collected in the early 1980s indicate that the crust between approximately 1 and 4.5 km depth is comprised primarily of Mesozoic mafic rocks, with extensive faulting that is spatially coincident with modern seismicity in the epicentral area (Chapman and Beale, 2010). This thesis proposes a new and testable hypothesis concerning the fault source of the 1886 shock that is very different from all previous interpretations. It is based on data collected during 2011-2012 from a local seismic network deployment in the immediate epicentral area. The 8-station temporary network was designed to better constrain earthquake hypocenter locations and focal mechanisms. Hypocenter locations of 134 earthquakes indicate a south-striking, west-dipping seismogenic zone in the upper 12 km of the crust. Over 40% of the 66 well-constrained focal mechanisms show reverse faulting on approximately north-south trending nodal planes, consistent with the orientation of the tabular hypocenter distribution. I offer the following hypothesis: The 1886 shock occurred by compressional reactivation of a major, south-striking, west-dipping early Mesozoic extensional fault. The modern seismicity can be regarded as a long-term aftershock sequence that is outlining the 1886 damage zone. Variability of shallow focal mechanisms is due to the complex early Mesozoic fault structure in the upper 4-5 km.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:4271en
dc.identifier.urihttp://hdl.handle.net/10919/51252en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectearthquakesen
dc.subjectseismicityen
dc.subjectseismic hazarden
dc.subjectSouth Carolinaen
dc.titleHypocenter Locations and Focal Mechanism Solutions of Earthquakes in the Epicentral Area of the 1886 Charleston, SC, Earthquakeen
dc.typeThesisen
thesis.degree.disciplineGeosciencesen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Hardy_AC_T_2015.pdf
Size:
4.84 MB
Format:
Adobe Portable Document Format
Name:
Hardy_AC_T_2015_support_1.docx
Size:
20.44 KB
Format:
Microsoft Word XML
Description:
Supporting documents

Collections