Development of Potential Remote Coal Mine Fire Response Measures: Use of Multiple Passive Source Tracers and Simulation of High Expansion Foam Flow in Simulated Gob Material

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


This thesis examines potential improvements to current coal mine fire response measures. In the event of a fire scenario, indirect testing and analysis of the exhausting air is needed to characterize changes in the fire. The application of multiple passive source tracers provides improved detail of complex ventilation interactions over an extended period of time. The first work in this thesis details the testing of the passive release rates for three Perfluorocarbon tracer compounds over a 180-day period. The results of this study demonstrate the ability for the permeation plug release vessel design to release Perfluorocarbon tracers at a steady rate.

Current response methods for a fire in a coal mine gob consist of injection of inert gas and sealing of the mine openings. Injection of high expansion foam into the gob from the surface has potential to improve extinguishment of the fire and reduce the time needed to bring the mine back to an operational state. The applicability of this method requires computational modeling and field testing. The second part of this thesis determines the Darcy and Forchheimer values for high expansion foam flow in simulated gob material with a lab experiment. The experiment was replicated in the CFD software, OpenFOAM, to validate the methods for calculation of the Darcy and Forchheimer values. The results of this study provide a tested methodology for a future full scale modeling of high expansion foam injection in a coal mine gob.



Tracer Gas, Ventilation, Foam, Simulation