Stabilizing spiral structures and population diversity in the asymmetric May-Leonard model through immigration

dc.contributor.authorSerrao, Shannon R.en
dc.contributor.authorTäuber, Uwe C.en
dc.date.accessioned2021-10-30T15:40:33Zen
dc.date.available2021-10-30T15:40:33Zen
dc.date.issued2021-08-01en
dc.date.updated2021-10-30T15:40:31Zen
dc.description.abstractWe study the induction and stabilization of spiral structures for the cyclic three-species stochastic May-Leonard model with asymmetric predation rates on a spatially inhomogeneous two-dimensional toroidal lattice using Monte Carlo simulations. In an isolated setting, strongly asymmetric predation rates lead to rapid extinction from coexistence of all three species to a single surviving population. Even for weakly asymmetric predation rates, only a fraction of ecologies in a statistical ensemble manages to maintain full three-species coexistence. However, when the asymmetric competing system is coupled via diffusive proliferation to a fully symmetric May-Leonard patch, the stable spiral patterns from this region induce transient plane-wave fronts and ultimately quasi-stationary spiral patterns in the vulnerable asymmetric region. Thus the endangered ecological subsystem may effectively become stabilized through immigration from even a much smaller stable region. To describe the stabilization of spiral population structures in the asymmetric region, we compare the increase in the robustness of these topological defects at extreme values of the asymmetric predation rates in the spatially coupled system with the corresponding asymmetric May{Leonard model in isolation. We delineate the quasi-stationary nature of coexistence induced in the asymmetric subsystem by its diffusive coupling to a symmetric May{Leonard patch, and propose a (semi-)quantitative criterion for the spiral oscillations to be sustained in the asymmetric region.en
dc.description.versionAccepted versionen
dc.format.extent15 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 175 (Article number)en
dc.identifier.doihttps://doi.org/10.1140/epjb/s10051-021-00168-xen
dc.identifier.eissn1434-6036en
dc.identifier.issn1434-6028en
dc.identifier.issue8en
dc.identifier.orcidTauber, Uwe [0000-0001-7854-2254]en
dc.identifier.urihttp://hdl.handle.net/10919/106448en
dc.identifier.volume94en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000687999200001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPhysics, Condensed Matteren
dc.subjectPhysicsen
dc.subjectORGANIZATIONen
dc.subjectFluids & Plasmasen
dc.subject01 Mathematical Sciencesen
dc.subject02 Physical Sciencesen
dc.titleStabilizing spiral structures and population diversity in the asymmetric May-Leonard model through immigrationen
dc.title.serialEuropean Physical Journal Ben
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Physicsen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
document.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
Accepted version