Cloud-Sourcing: Using an Online Labor Force to Detect Clouds and Cloud Shadows in Landsat Images
dc.contributor.author | Yu, Ling | en |
dc.contributor.author | Ball, Sheryl B. | en |
dc.contributor.author | Blinn, Christine E. | en |
dc.contributor.author | Moeltner, Klaus | en |
dc.contributor.author | Peery, Seth | en |
dc.contributor.author | Thomas, Valerie A. | en |
dc.contributor.author | Wynne, Randolph H. | en |
dc.contributor.department | Agricultural and Applied Economics | en |
dc.contributor.department | Economics | en |
dc.contributor.department | Forest Resources and Environmental Conservation | en |
dc.date.accessioned | 2017-09-20T18:21:41Z | en |
dc.date.available | 2017-09-20T18:21:41Z | en |
dc.date.issued | 2015-02-26 | en |
dc.date.updated | 2017-09-20T18:21:41Z | en |
dc.description.abstract | We recruit an online labor force through Amazon.com’s Mechanical Turk platform to identify clouds and cloud shadows in Landsat satellite images. We find that a large group of workers can be mobilized quickly and relatively inexpensively. Our results indicate that workers’ accuracy is insensitive to wage, but deteriorates with the complexity of images and with time-on-task. In most instances, human interpretation of cloud impacted area using a majority rule was more accurate than an automated algorithm (Fmask) commonly used to identify clouds and cloud shadows. However, cirrus-impacted pixels were better identified by Fmask than by human interpreters. Crowd-sourced interpretation of cloud impacted pixels appears to be a promising means by which to augment or potentially validate fully automated algorithms. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Yu, L.; Ball, S.B.; Blinn, C.E.; Moeltner, K.; Peery, S.; Thomas, V.A.; Wynne, R.H. Cloud-Sourcing: Using an Online Labor Force to Detect Clouds and Cloud Shadows in Landsat Images. Remote Sens. 2015, 7, 2334-2351. | en |
dc.identifier.doi | https://doi.org/10.3390/rs70302334 | en |
dc.identifier.uri | http://hdl.handle.net/10919/79232 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | cloud interpretation | en |
dc.subject | satellite images | en |
dc.subject | Mechanical Turk | en |
dc.subject | economic experiment | en |
dc.title | Cloud-Sourcing: Using an Online Labor Force to Detect Clouds and Cloud Shadows in Landsat Images | en |
dc.title.serial | Remote Sensing | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |