An exponential interpolation series

dc.contributor.authorHowell, William Edwarden
dc.contributor.departmentMathematicsen
dc.date.accessioned2019-07-03T20:33:48Zen
dc.date.available2019-07-03T20:33:48Zen
dc.date.issued1968en
dc.description.abstractThe convergence properties of the permanent exponential interpolation series f(Z) = 1<sup>Z</sup>f(0) + (2<sup>Z</sup> - 1<sup>Z</sup>)Δf(0) + (3<sup>Z</sup> - 2.2<sup>Z</sup> + 1<sup>Z</sup>/2!)Δ(Δ - 1)f(0) + … have been investigated. Using the following notation U<sub>n</sub>(Z) = ∑<sup>n</sup><sub>k=0</sub> (-1)<sup>k</sup>(<sup>n</sup><sub>k</sub>)(n - i + 1)<sup>Z</sup>, Δ<sup>(n)</sup> f(0) = Δ(Δ-1)…(Δ - n + 1)f(0), the series can be written more compactly as f(Z) = ∑<sup>∞</sup><sub>0</sub> U<sub>n</sub>(Z)/n!Δ<sup>(n)</sup> f(0). It is shown that Δ<sup>(n)</sup> f(0) can be represented as Δ<sup>(n)</sup> f(0) = M<sub>n</sub>(f) = 1/2πi ∫<sub>Γ</sub> (e<sup>ω</sup> - 1)<sup>(n)</sup> F(ω)dω, where F(ω) is the Borel transform of f(Z) and Γ encloses the convex hull of the singularities of F(ω). It is further shown that the series ∑<sup>∞</sup><sub>0</sub> U<sub>n</sub>(Z)/n! (e<sup>ω</sup> - 1)<sup>(n)</sup> forms a uniformly convergent Gregory-Newton series, convergent to e<sup>Zω</sup> in any bounded region in the strip |I(ω)| < π/2. The Polya representation of an entire function of exponential type is then formed, and the method of kernel expansion (R. P. Boas, and R. C. Buck, Polynomial Expansions of Analytic Functions, Springer-Verlag, Berlin, 1964) yields the desired result. This result is summed up in the following: Theorem Any entire function of exponential type such that the convex hull of the set of singularities of its Borel transform lies in the strip |I(ω)| < π/2. admits the convergent exponential interpolation series expansion f(Z) = ∑<sup>∞</sup><sub>n=0</sub> U<sub>n</sub>(Z)/n!Δ<sup>(n)</sup> f(0) for all Z.en
dc.description.degreeM.S.en
dc.format.extentiii, 30, [2] leaveen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/91112en
dc.language.isoen_USen
dc.publisherVirginia Polytechnic Instituteen
dc.relation.isformatofOCLC# 20183875en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V855 1968.H66en
dc.subject.lcshInterpolationen
dc.subject.lcshExponential functionsen
dc.titleAn exponential interpolation seriesen
dc.typeThesisen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Instituteen
thesis.degree.levelmastersen
thesis.degree.nameM.S.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V855_1968.H66.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format

Collections