Evaluating the Long-Term Morphological Response of a Headwater Stream to Three Restoration Techniques

dc.contributor.authorHendrix, Coral Eliseen
dc.contributor.committeechairThompson, Theresa M.en
dc.contributor.committeememberHession, W. Cullyen
dc.contributor.committeememberSchwartz, John S.en
dc.contributor.departmentBiological Systems Engineeringen
dc.date.accessioned2022-08-24T08:00:25Zen
dc.date.available2022-08-24T08:00:25Zen
dc.date.issued2022-08-23en
dc.description.abstractThe stream restoration industry has been growing since the addition and modification of Section 404 to the Clean Water Act. Many projects follow the guidelines of Natural Channel Design and use in-stream structures to stabilize stream channels. Post-project monitoring rarely exceeds 3-5 years, and the lack of guidance, funding, and pre-restoration data prevents meaningful post-project assessment of the design techniques. The Virginia Tech Stream Research, Education, and Management (StREAM) Lab is a research facility where a stream restoration project was completed along 1.3 km of Stroubles Creek in 2010. The study site provides a unique opportunity to compare the use of three restoration treatments with different intensities of restoration actions. Following exclusion of cattle from all three sites, the first treatment reach was left to naturally revegetate (Treatment 1) and along Treatment 2 the streambanks were re-graded to a 3:1 slope and replanted. An additional inset floodplain was constructed within the active channel of Treatment 3. Pre-restoration data, including topographic surveys and erosion pin measurements, provided a baseline for quantification of morphological response 11 years post-restoration. This project utilized as-built survey data from 2010 and a follow-up survey in 2021. The spatial data were analyzed to quantify important stream metrics: cross-sectional area, width, maximum depth, hydraulic depth, and width-to-depth ratio. Overall, the percent change per year of each metric decreased substantially following the restoration, indicating an increase in stability. While Treatment 3 continues to show minor erosion on average (+3.3% in area, +3.2% in width, and +11.2% in maximum depth), Treatments 1 (excluding cross section 5) and 2 decreased on average in area (-3.4% and -18.6%) and hydraulic depth (-13.3% and -10.8%). Treatment 1 eroded by an average of 11.7% in width compared to a decrease of -13.4% in Treatment 2 and an increase in 3.2% in Treatment 3. Comparisons of each treatment to Virginia Mitigation Banking Standards indicated Treatment 1 met the fewest number of criteria, followed by Treatment 2 and then Treatment 3, indicating that hard structures are not necessary to meet mitigation bank standards, even in urban watersheds. In an urban, incised channel with cattle impacts, re-grading the streambanks, actively planting woody riparian vegetation, and incorporating an inset floodplain will accelerate the establishment of channel stability, as compared to the more passive approach of simply removing cattle access to the channel.en
dc.description.abstractgeneralThe stream restoration industry has been growing since the addition and modification of Section 404 to the Clean Water Act. Specific design models, such as Natural Channel Design which focuses heavily on preventing the stream from moving using stone and wood structures, guide many projects. Post-project monitoring rarely exceeds 3-5 years, and the lack of guidance, funding, and pre-restoration data prevents meaningful post-project assessment of the design techniques. The Virginia Tech Stream Research, Education, and Management (StREAM) Lab is a research facility in which human interactions in the Stroubles Creek Watershed can be evaluated. A stream restoration project was completed on Stroubles Creek at the StREAM Lab property in 2010. This project provides a unique opportunity to compare three different intensities of restoration actions. Following exclusion of cattle from all three sites, plants were left to naturally regrow in the first treatment reach and Treatment 2 re-shaped the banks to a gentler slope and replanted. Like Treatment 2, an additional inset floodplain was constructed within the active channel of Treatment 3. Pre-restoration data, including topographic surveys and bank erosion measurements provided a baseline for quantification of physical response 11 years post-restoration. This project utilized survey data from immediately post-restoration in 2010, and a follow-up survey in 2021. The surveys were analyzed using AutoCAD Civil3D and cross-sectional area, width, maximum depth, hydraulic depth (area/top width), and width-to-depth ratio were calculated. Overall, the percent change per year of each metric decreased substantially following the restoration, indicating an increase in stability. While Treatment 3 continues to show minor erosion (+3.3% in area, +3.2% in width, and +11.2% in maximum depth), Treatments 1 (excluding cross section 5) and 2 decreased on average in area (-3.4% and -18.6%) and hydraulic depth (-13.3% and -10.8%). Treatment 1 eroded by an average of 11.7% in width compared to a decrease of -13.4% in Treatment 2 and an increase in 3.2% in Treatment 3. Comparisons of each treatment to Virginia Mitigation Banking Standards indicated Treatment 3 met the highest number of criteria, followed by Treatment 2 and then Treatment 1, indicating that hard structures are not necessary to meet mitigation bank standards, even in urban watersheds. In an urban, incised channel with cattle impacts, regrading the streambanks, actively planting woody riparian vegetation, and incorporating an inset floodplain will accelerate the establishment of channel stability, as compared to the more passive approach of simply removing cattle access to the channel.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:35414en
dc.identifier.urihttp://hdl.handle.net/10919/111609en
dc.language.isoenen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectStream restorationen
dc.subjecturban streamen
dc.subjectmonitoringen
dc.subjectgeomorphologyen
dc.titleEvaluating the Long-Term Morphological Response of a Headwater Stream to Three Restoration Techniquesen
dc.typeThesisen
thesis.degree.disciplineBiological Systems Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hendrix_CE_T_2022.pdf
Size:
5.94 MB
Format:
Adobe Portable Document Format

Collections