VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Contextualization and Sodium Diet Implications of Occoquan Reservoir Salinization

TR Number

Date

2023-03-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Freshwater salinization syndrome is a rising threat globally which results in increased ion concentrations in inland freshwaters. This syndrome threatens healthy aquatic ecosystems and can alter the perception of the potability of finished drinking water. The Occoquan Reservoir, located in Northern Virginia, is a freshwater system that is facing rising salinization. Stakeholders for the reservoir have been convened to address these rising salinization concerns. Among these stakeholders, there are a variety of viewpoints on the significance of the salinization, which is preventing a high level of convergence around this threat. To assist in contextualizing this system, empirical cumulative distribution functions were generated from data gathered from various governmental sources and compared the reservoir's watershed and finished drinking water ion concentrations. These analyses show that the watershed and finished drinking water have some of the highest concentrations of sodium and chloride statewide. Additional investigations determined the trend of sodium increases in finished drinking water since the 1980s. Monte Carlo simulations were ran to determined whether there would be risks to human from ingesting this water should this trend continued. Results from these analyses greatly varied due to the wide range in drinking water ingestion rates. The purpose of these analyses is to assist with stakeholder convergence around the level of threat salinization poses to the reservoir and to initiate discussions of what an acceptable threshold for management could be.

Description

Keywords

Occoquan, freshwater, salinization, threshold, context

Citation

Collections