A Passive Microfluidic Device for Buffer Transfer of Cells

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Buffer transfer of cells is a critical process in many biomedical applications such as dielectrophoresis experiments, optical trapping, and flow cytometry. Existing methods for buffer transfer of cells are time consuming, require skilled technicians and involve expensive equipment such as centrifuge and bio safety hoods. Furthermore, even a minute error in transferring the cells can easily result in cell lysis and decrease in viability. In this work, a lab-on-a-chip device is proposed that uses a textit{passive microfluidic approach} to effectively transfer cells from a growth medium to a desired buffer for downstream cDEP analysis. This eliminates the need for any external fields, expensive equipment, and significantly reduces manual efforts. Computational studies were carried out to analyze the impact of device geometry, channel configuration, and flowrate on the effectiveness of buffer transfer. The proposed device was evaluated through a parametric sweep and the device configurations were identified that induce low values of fluid shear stress, support high throughput, and maintains minimal diffusion. Finally, a method for fabricating the device in the laboratory using PDMS was illustrated. The outcome of this study helps further the development of highly effective microfluidic devices capable of performing buffer transfer of multiple cell lines.



Microfluidics, Computational fluid dynamics, Electrical Conductivity, Fluid Induced Shear Stress, Throughput, Buffer