Transfer Entropy Analysis of the Interactions of Flying Bats
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this document, a low-cost, portable, non-invasive method of collecting the 3D trajectories of flying bats is first presented. An array of commercially available camera and light components is used alongside a number of well-established calibration and triangulation techniques to resolve the motion of agents through a 3D volume. It is shown that this system is capable of accurately capturing the bats' flight paths in a field experiment. The use of non-visible illumination ensures that a natural cave environment is disturbed as little as possible for behavioral experiments.
Following is a transfer entropy analysis approach applied to the 3D paths of bats flying in pairs. The 3D trajectories are one-dimensionally characterized as inverse curvature time series to allow for entropy calculations. In addition to a traditional formulation of information flow between pair members, a path coupling hypothesis is pursued with time-delay modifications implemented in such a way as to not change the Markovianity of the process. With this modification, trends are found that suggest a leader-follower interaction between the front bat and the rear bat, although statistical significance is not reached due to the small number of pairs considered.