Debonding of confined elastomeric layer using cohesive zone model

dc.contributor.authorMukherjee, Bikramjiten
dc.contributor.authorDillard, David A.en
dc.contributor.authorMoore, Robert Bowenen
dc.contributor.authorBatra, Romesh C.en
dc.contributor.departmentBiomedical Engineering and Mechanicsen
dc.contributor.departmentChemistryen
dc.date.accessioned2017-03-03T18:49:43Zen
dc.date.available2017-03-03T18:49:43Zen
dc.date.issued2016-04-01en
dc.description.abstractWavy or undulatory debonding is often observed when a confined/sandwiched elastomeric layer is pulled off from a stiff adherend. Here we analyze this debonding phenomenon using a cohesive zone model (CZM). Using stability analysis of linear equations governing plane strain quasi-static deformations of an elastomer, we find (i) a non-dimensional number relating the elastomer layer thickness, h, the long term Young's modulus, <i>E<sub>&#8734;</sub></i>, of the interlayer material, the peak traction, <i>T<sub>c</sub></i>, in the CZM bilinear tractionseparation (TS) relation, and the fracture energy, <i>G<sub>c</sub></i>, of the interface between the adherend and the elastomer layer, and (ii) the critical value of this number that provides a necessary condition for undulations to occur during debonding. For the elastomer modeled as a linear viscoelastic material with the shear modulus given by a Prony series and a rate-independent bilinear TS relation in the CZM, the stability analysis predicts that a necessary condition for a wavy solution is that <i>T<sub>c</sub><sup>2</sup>h=G<sub>c</sub>E<sub>&#8734;</sub></i> exceed 4:15. This is supported by numerically solving governing equations by the finite element method (FEM). Lastly, we use the FEM to study three-dimensional deformations of the peeling (induced by an edge displacement) of a flexible plate from a thin elastomeric layer perfectly bonded to a rigid substrate. These simulations predict progressive debonding with a fingerlike front for sufficiently confined interlayers when the TS parameters satisfy a constraint similar to that found from the stability analysis of the plane strain problem.en
dc.description.versionPublished versionen
dc.format.extent114 - 127 (14) page(s)en
dc.identifier.doihttps://doi.org/10.1016/j.ijadhadh.2015.12.006en
dc.identifier.issn0143-7496en
dc.identifier.orcidDillard, DA [0000-0002-2903-9318]en
dc.identifier.urihttp://hdl.handle.net/10919/75232en
dc.identifier.volume66en
dc.languageEnglishen
dc.publisherElsevieren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000371940600015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectTechnologyen
dc.subjectEngineering, Chemicalen
dc.subjectMaterials Science, Multidisciplinaryen
dc.subjectEngineeringen
dc.subjectMaterials Scienceen
dc.subjectFingerlike instabilityen
dc.subjectWavy or undulatory debond fronten
dc.subjectCohesive zone model (CZM)en
dc.subjectElastomeric interlayeren
dc.subjectDebondingen
dc.subjectPRESSURE-SENSITIVE-ADHESIVESen
dc.subjectORTHOGONAL ELASTIC WEDGESen
dc.subjectFILMen
dc.subjectFRACTUREen
dc.subjectINSTABILITYen
dc.subjectCRACKen
dc.subjectDELAMINATIONen
dc.subjectSIMULATIONSen
dc.subjectPATTERNSen
dc.titleDebonding of confined elastomeric layer using cohesive zone modelen
dc.title.serialInternational Journal of Adhesion And Adhesivesen
dc.typeArticle - Refereeden
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Biomedical Engineering and Mechanicsen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mukherjee_etal_2016.pdf
Size:
3.74 MB
Format:
Adobe Portable Document Format
Description:
Publisher's Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: