Schur-class of finitely connected planar domains: the test-function approach
dc.contributor.author | Guerra Huaman, Moises Daniel | en |
dc.contributor.committeechair | Ball, Joseph A. | en |
dc.contributor.committeemember | Hagedorn, George A. | en |
dc.contributor.committeemember | Renardy, Michael J. | en |
dc.contributor.committeemember | Kim, Jong Uhn | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T20:10:58Z | en |
dc.date.adate | 2011-05-12 | en |
dc.date.available | 2014-03-14T20:10:58Z | en |
dc.date.issued | 2011-04-18 | en |
dc.date.rdate | 2011-05-12 | en |
dc.date.sdate | 2011-04-26 | en |
dc.description.abstract | We study the structure of the set of extreme points of the compact convex set of matrix-valued holomorphic functions with positive real part on a finitely-connected planar domain 𝐑 normalized to have value equal to the identity matrix at some prescribed point t₀ ∈ 𝐑. This leads to an integral representation for such functions more general than what would be expected from the result for the scalar-valued case. After Cayley transformation, this leads to a integral Agler decomposition for the matrix Schur class over 𝐑 (holomorphic contractive matrix-valued functions over 𝐑). Application of a general theory of abstract Schur-class generated by a collection of test functions leads to a transfer-function realization for the matrix Schur-class over 𝐑, extending results known up to now only for the scalar case. We also explain how these results provide a new perspective for the dilation theory for Hilbert space operators having 𝐑 as a spectral set. | en |
dc.description.degree | Ph. D. | en |
dc.identifier.other | etd-04262011-111257 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-04262011-111257/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/27334 | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | GuerraHuaman_MD_D_2011.pdf | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | completely positive kernel | en |
dc.subject | extreme points. | en |
dc.subject | Schur class | en |
dc.subject | test functions | en |
dc.title | Schur-class of finitely connected planar domains: the test-function approach | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- GuerraHuaman_MD_D_2011.pdf
- Size:
- 459.91 KB
- Format:
- Adobe Portable Document Format