Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes

dc.contributor.authorHou, Dongen
dc.contributor.authorXu, Zhengruien
dc.contributor.authorYang, Zhijieen
dc.contributor.authorKuai, Chunguangen
dc.contributor.authorDu, Zhijiaen
dc.contributor.authorSun, Cheng-Junen
dc.contributor.authorRen, Yangen
dc.contributor.authorLiu, Jueen
dc.contributor.authorXiao, Xianghuien
dc.contributor.authorLin, Fengen
dc.date.accessioned2022-06-23T17:39:22Zen
dc.date.available2022-06-23T17:39:22Zen
dc.date.issued2022-06-15en
dc.date.updated2022-06-23T15:38:33Zen
dc.description.abstractOne of the most challenging aspects of developing high-energy lithium-based batteries is the structural and (electro)chemical stability of Ni-rich active cathode materials at thermally-abused and prolonged cell cycling conditions. Here, we report in situ physicochemical characterizations to improve the fundamental understanding of the degradation mechanism of charged polycrystalline Ni-rich cathodes at elevated temperatures (e.g., ≥ 40 °C). Using multiple microscopy, scattering, thermal, and electrochemical probes, we decouple the major contributors for the thermal instability from intertwined factors. Our research work demonstrates that the grain microstructures play an essential role in the thermal stability of polycrystalline lithium-based positive battery electrodes. We also show that the oxygen release, a crucial process during battery thermal runaway, can be regulated by engineering grain arrangements. Furthermore, the grain arrangements can also modulate the macroscopic crystallographic transformation pattern and oxygen diffusion length in layered oxide cathode materials.en
dc.description.versionAccepted versionen
dc.format.extentPages 3437en
dc.format.mimetypeapplication/pdfen
dc.identifier3437 (Article number)en
dc.identifier.doihttps://doi.org/10.1038/s41467-022-30935-yen
dc.identifier.eissn2041-1723en
dc.identifier.issn2041-1723en
dc.identifier.issue1en
dc.identifier.orcidLin, Feng [0000-0002-3729-3148]en
dc.identifier.other10.1038/s41467-022-30935-y (PII)en
dc.identifier.pmid35705552en
dc.identifier.urihttp://hdl.handle.net/10919/110898en
dc.identifier.volume13en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/35705552en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleEffect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodesen
dc.title.serialNature Communicationsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
dcterms.dateAccepted2022-05-19en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Chemistryen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
forPublication_Manuscript_final_v1.1.pdf
Size:
2.87 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
Loading...
Thumbnail Image
Name:
forPublication_Supplementary_final_ver1.1.pdf
Size:
5 MB
Format:
Adobe Portable Document Format
Description:
Supporting information