Scaling adaptive quantum simulation algorithms via operator pool tiling

dc.contributor.authorVan Dyke, John S.en
dc.contributor.authorShirali, Karunyaen
dc.contributor.authorBarron, George S.en
dc.contributor.authorMayhall, Nicholas J.en
dc.contributor.authorBarnes, Edwinen
dc.contributor.authorEconomou, Sophia E.en
dc.date.accessioned2025-02-18T13:18:54Zen
dc.date.available2025-02-18T13:18:54Zen
dc.date.issued2024-02-16en
dc.description.abstractAdaptive variational quantum simulation algorithms use information from a quantum computer to dynamically create optimal trial wave functions for a given problem Hamiltonian. A key ingredient in these algorithms is a predefined operator pool from which trial wave functions are constructed. Finding suitable pools is critical for the efficiency of the algorithm as the problem size increases. Here, we present a technique called operator pool tiling that facilitates the construction of problem-tailored pools for arbitrarily large problem instances. By first performing an Adaptive Derivative-Assembled Problem-Tailored Ansatz Variational Quantum Eigensolver (ADAPT-VQE) calculation on a smaller instance of the problem using a large, but computationally inefficient, operator pool, we extract the most relevant operators and use them to design more efficient pools for larger instances. We demonstrate the method here on strongly correlated quantum spin models in one and two dimensions, finding that ADAPT automatically finds a highly effective ansatz for these systems. Given that many problems, such as those arising in condensed matter physics, have a naturally repeating lattice structure, we expect the pool tiling method to be a widely applicable technique apt for such systems.en
dc.description.versionAccepted versionen
dc.format.extent8 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN L012030 (Article number)en
dc.identifier.doihttps://doi.org/10.1103/PhysRevResearch.6.L012030en
dc.identifier.eissn2643-1564en
dc.identifier.issn2643-1564en
dc.identifier.issue1en
dc.identifier.orcidMayhall, Nicholas [0000-0002-1312-9781]en
dc.identifier.urihttps://hdl.handle.net/10919/124633en
dc.identifier.volume6en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleScaling adaptive quantum simulation algorithms via operator pool tilingen
dc.title.serialPhysical Review Researchen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2023-12-14en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Chemistryen
pubs.organisational-groupVirginia Tech/Science/Physicsen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2206.14215v2.pdf
Size:
659.59 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: