Vehicle Sprung Mass Parameter Estimation Using an Adaptive Polynomial-Chaos Method

dc.contributor.authorShimp, Samuel Kline IIIen
dc.contributor.committeechairSouthward, Steve C.en
dc.contributor.committeememberAhmadian, Mehdien
dc.contributor.committeememberSandu, Corinaen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2014-03-14T20:34:38Zen
dc.date.adate2008-05-14en
dc.date.available2014-03-14T20:34:38Zen
dc.date.issued2008-04-18en
dc.date.rdate2008-05-14en
dc.date.sdate2008-04-30en
dc.description.abstractThe polynomial-chaos expansion (PCE) approach to modeling provides an estimate of the probabilistic response of a dynamic system with uncertainty in the system parameters. A novel adaptive parameter estimation method exploiting the polynomial-chaos representation of a general quarter-car model is presented. Because the uncertainty was assumed to be concentrated in the sprung mass parameter, a novel pseudo mass matrix was developed for generating the state-space PCE model. In order to implement the PCE model in a real-time adaptation routine, a novel technique for representing PCE output equations was also developed. A simple parameter estimation law based on the output error between measured accelerations and PCE acceleration estimates was developed and evaluated through simulation and experiment. Simulation results of the novel adaptation algorithm demonstrate the estimation convergence properties as well as its limitations. The simulation results are further verified by a real-time experimental implementation on a quarter-car test rig. This work presents the first truly real-time implementation of a PCE model. The experimental real-time implementation of the novel adaptive PCE estimation method shows promising results by its ability to converge and maintain a stable estimate of the unknown parameter.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-04302008-110230en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-04302008-110230/en
dc.identifier.urihttp://hdl.handle.net/10919/32056en
dc.publisherVirginia Techen
dc.relation.haspartShimp_Samuel_MS_ETD_Final.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPolynomial-Chaosen
dc.subjectadaptive parameter estimationen
dc.subjectadaptive controlen
dc.subjectuncertainty propagationen
dc.subjectstochastic modelingen
dc.titleVehicle Sprung Mass Parameter Estimation Using an Adaptive Polynomial-Chaos Methoden
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shimp_Samuel_MS_ETD_Final.pdf
Size:
820.71 KB
Format:
Adobe Portable Document Format

Collections